首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effects on water mass formation of surface mixed layer timedependence and entrainment fluxes
Authors:Chris Garrett  Amit Tandon
Institution:School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700, Victoria, BC, V8W 2Y2, Canada
Abstract:An air-sea buoyancy flux out of the ocean between the surface outcroppings of different isopycnals must be balanced by a convergence of advective and diffusive fluxes of buoyancy across those isopycnals (Walin, 1982; Tziperman, 1986; Garrett et al., 1995). For steady conditions, the diapycnal diffusive flux due to vertical mixing in the surface mixed layer is very small, so that the advective buoyancy flux dominates (Speer, 1993; Garrett et al., 1995). The associated advective buoyancy flux can then be used to estimate the volume flux of water out of the base of the surface mixed layer. The resulting thermodynamic algorithm provides a valuable estimate of water mass formation in the ocean.In contrast, for the time-dependent real ocean with horizontal and vertical gradients of the horizontal buoyancy gradient, diurnal and seasonal mixed layer deepening and entrainment in the presence of a buoyancy jump at the base of the mixed layer contributes to the annual volume flux out of the base of the deepest (wintertime) mixed layer. The mismatch between the predictions of the ideal algorithm and measured rates of water mass formation (Speer, 1997) may thus be partly due to mixed layer processes rather than diapycnal mixing in the thermocline.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号