首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using satellite altimetry to correct mean temperature and salinity fields derived from Argo floats in the ocean regions around Australia
Authors:KR Ridgway  JR Dunn
Institution:Centre for Australian Weather and Climate Research, a partnership between CSIRO and the Bureau of Meteorology, Wealth from Oceans National Research Flagship, Hobart, Tasmania, Australia
Abstract:We present results from a suite of methods using in situ temperature and salinity data, and satellite altimetric observations to obtain an enhanced set of mean fields of temperature, salinity (down to 2000-m depth) and steric height (0/2000 m) for a time-specific period (1992–2007). Firstly, the improved global sampling resulting from the introduction of the Argo program, enables a representative determination of the large-scale mean oceanic structure. However, shortcomings in the coverage remain. High variability western boundary current eddy fields, continental slope and shelf boundaries may all be below their optimal sampling requirements. We describe a simple method to supplement and improve standard spatial interpolation schemes and apply them to the available data within the waters surrounding Australia (100°E–180°W; 50°S–10°N). This region includes a major current system, the East Australian Current (EAC), complex topography, unique boundary currents such as the Leeuwin Current, and large ENSO related interannual variability in the southwest Pacific. We use satellite altimetry sea level anomalies (SLA) to directly correct sampling errors in in situ derived mean surface steric height and subsurface temperature and salinity fields. The surface correction is projected through the water column (using an empirical model) to modify the mean subsurface temperature and salinity fields. The errors inherent in all these calculations are examined. The spatial distribution of the barotropic–baroclinic balance is obtained for the region and a ‘baroclinic factor’ to convert the altimetry SLA into an equivalent in situ height is determined. The mean fields in the EAC region are compared with independent estimates on repeated XBT sections, a mooring array and full-depth CTD transects.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号