首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge
Authors:Long Lin  Hailun He  Yong Cao  Tao Li  Yilin Liu  Mingfeng Wang
Institution:1.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China3.Key Laboratory of Physical Oceanography, Ministry of Education, Qingdao 266003, China
Abstract:Oceanic vertical mixing of the lower halocline water (LHW) in the Chukchi Borderland and Mendeleyev Ridge was studied based on in situ hydrographic and turbulent observations. The depth-averaged turbulent dissipation rate of LHW demonstrates a clear topographic dependence, with a mean value of 1.2×10–9 W/kg in the southwest of Canada Basin, 1.5×10–9 W/kg in the Mendeleyev Abyssal Plain, 2.4×10–9 W/kg on the Mendeleyev Ridge, and 2.7×10–9 W/kg on the Chukchi Cap. Correspondingly, the mean depth-averaged vertical heat flux of the LHW is 0.21 W/m2 in the southwest Canada Basin, 0.30 W/m2 in the Mendeleyev Abyssal Plain, 0.39 W/m2 on the Mendeleyev Ridge, and 0.46 W/m2 on the Chukchi Cap. However, in the presence of Pacific Winter Water, the upward heat released from Atlantic Water through the lower halocline can hardly contribute to the surface ocean. Further, the underlying mechanisms of diapycnal mixing in LHW—double diffusion and shear instability—was investigated. The mixing in LHW where double diffusion were observed is always relatively weaker, with corresponding dissipation rate ranging from 1.01×10–9 W/kg to 1.57×10–9 W/kg. The results also show a strong correlation between the depth-average dissipation rate and strain variance in the LHW, which indicates a close physical linkage between the turbulent mixing and internal wave activities. In addition, both surface wind forcing and semidiurnal tides significantly contribute to the turbulent mixing in the LHW.
Keywords:oceanic vertical mixing  lower halocline water  dissipation rate  vertical heat flux
本文献已被 万方数据 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号