首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characteristics of sea ice kinematics from the marginal ice zone to the packed ice zone observed by buoys deployed during the 9th Chinese Arctic Expedition
Authors:Xiaomin Chang  Longchun Ye  Guangyu Zuo  Jingyue Li  Keyu Wei  Yinke Dou
Institution:1.College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China2.College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:Sea ice growth and consolidation play a significant role in heat and momentum exchange between the atmosphere and the ocean. However, few in situ observations of sea ice kinematics have been reported owing to difficulties of deployment of buoys in the marginal ice zone (MIZ). To investigate the characteristics of sea ice kinematics from MIZ to packed ice zone (PIZ), eight drifting buoys designed by Taiyuan University of Technology were deployed in the open water at the ice edge of the Canadian Basin. Sea ice near the buoy constantly increased as the buoy drifted, and the kinematics of the buoy changed as the buoy was frozen into the ice. This process can be determined using sea ice concentration, sea skin temperature, and drift speed of buoy together. Sea ice concentration data showed that buoys entered the PIZ in mid-October as the ice grew and consolidated around the buoys, with high amplitude, high frequency buoy motions almost ceasing. Our results confirmed that good correlation coefficient in monthly scale between buoy drift and the wind only happened in the ice zone. The correlation coefficient between buoys and wind was below 0.3 while the buoys were in open water. As buoys entered the ice zone, the buoy speed was normally distributed at wind speeds above 6 m/s. The buoy drifted mainly to the right of the wind within 45° at wind speeds above 8 m/s. During further consolidation of the ice in MIZ, the direct forcing on the ice through winds will be lessened. The correlation coefficient value increased to 0.9 in November, and gradually decreased to 0.7 in April.
Keywords:sea ice  kinematics  buoy observations  remote sensing  marginal ice zone
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号