首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrogen fixation driven by mesoscale eddies and the Kuroshio Current in the northern South China Sea and the East China Sea
Authors:Liuyang Li  Chao Wu  Jun Sun  Shuqun Song  Changling Ding  Danyue Huang  Laxman Pujari
Abstract:N2 fixation rates (NFR, in terms of N) in the northern South China Sea (nSCS) and the East China Sea (ECS) were measured using the acetylene reduction assay in summer and winter, 2009. NFR of the surface water ranged from 1.14 nmol/(L·d) to 10.40 nmol/(L·d) (average at (4.89±3.46) nmol/(L·d), n=11) in summer and 0.74 nmol/(L·d) to 29.45 nmol/(L·d) (average at (7.81±8.50) nmol/(L·d), n=15) in winter. Significant spatio-temporal heterogeneity emerged in our study: the anticyclonic eddies (AE) (P<0.01) and the Kuroshio Current (KC) (P<0.05) performed significantly higher NFR than that in the cyclonic eddies or no-eddy area (CEONE), indicating NFR was profoundly influenced by the physical process of the Kuroshio and mesoscale eddies. The depth-integrated N2 fixation rates (INF, in terms of N) ranged from 52.4 μmol/(m2·d) to 905.2 μmol/(m2·d) (average at (428.9±305.5) μmol/(m2·d), n=15) in the winter. The contribution of surface NFR to primary production (PP) ranged from 1.7% to 18.5% in the summer, and the mean contribution of INF to new primary production (NPP) in the nSCS and ECS were estimated to be 11.0% and 36.7% in the winter. The contribution of INF to NPP (3.0%–93.9%) also decreased from oligotrophic sea toward the eutrophic waters affected by runoffs or the CEONE. Furthermore, we observed higher contributions compared to previous studies, revealing the vital roles of nitrogen fixation in sustaining the carbon pump of the nSCS and ECS.
Keywords:nitrogen fixation  primary production  anticyclonic eddies  Kuroshio  acetylene reduction assay
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号