首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling calving process of glacier with dilated polyhedral discrete element method
Authors:Lu Liu  Ji Li  Qizhen Sun  Chunhua Li  Sue Cook  Shunying Ji
Institution:1.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China2.National Marine Environmental Forecasting Center, Beijing 100081, China3.Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
Abstract:Mass loss caused by glacier calving is one of the direct contributors to global sea level rise. Reliable calving laws are required for accurate modelling of ice sheet mass balance. Both continuous and discontinuous methods have been used for glacial calving simulations. In this study, the discrete element method(DEM) based on dilated polyhedral elements is introduced to simulate the calving process of a tidewater glacier. Dilated polyhedrons can be obtained from the Minkowski sum of a sphere and a core polyhedron. These elements can be utilized to generate a continuum ice material, where the interaction force between adjacent elements is modeled by constructing bonds at the joints of the common faces. A hybrid fracture model considering fracture energy is introduced. The viscous creep behavior of glaciers on long-term scales is not considered. By applying buoyancy and gravity to the modelled glacier, DEM results show that the calving process is caused by cracks which are initialized at the top of the glacier and spread to the bottom. The results demonstrate the feasibility of using the dilated polyhedral DEM method in glacier simulations, additionally allowing the fragment size of the breaking fragments to be counted. The relationship between crack propagation and internal stress in the glacier is analyzed during calving process. Through the analysis of the Mises stress and the normal stress between the elements, it is found that geometric changes caused by the glacier calving lead to the redistribution of the stress. The tensile stress between the elements is the main influencing factor of glacier ice failure. In addition, the element shape,glacier base friction and buoyancy are studied, the results show that the glacier model based on the dilated polyhedral DEM is sensitive to the above conditions.
Keywords:glacier calving  discrete element method  dilated polyhedral element  bond and fracture model
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号