首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Specific oceanographic characteristics and phytoplankton responses influencing the primary production around the Ulleung Basin area in spring
作者姓名:Lee Minji  Kim Jin Ho  Kim Yun-Bae  Park Chan Hong  Shin Kyoungsoon  Baek Seung Ho
作者单位:South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Korea,South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Korea,Ulleungdo/Dokdo Ocean Science Station, Korea Institute of Ocean Science and Technology, Ulleungdo 40205, Korea,Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology, Uljin 36315, Korea,South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Korea,South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Korea
基金项目:The Basic Core Technology Development Program for the Oceans and the Polar Regions of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning under contract No. NRF-2016 M1A5A1027456; the project of the Ministry of Ocean and Fisheries under contract No. PG51010.
摘    要:The East Sea(Sea of Japan)is a marginal,semi-closed sea in the northwestern Pacific.The Ulleung Basin area,which is located near the subpolar front of the East Sea,is known to have high primary production and good fisheries in spring season.After episodic wind-driven events during the spring of 2017,horizontal and vertical profiles of physical chemical biological factors were investigated at 29 stations located in the Ulleung Basin area.In addition,growth responses of phytoplankton communities to nutrient additions were evaluated by bioassay experiments to understand the fluctuation of phytoplankton biomass.Because of strong northwestern wind,phytoplankton biomass was scattered and upwelling phenomenon might be suppressed in this season.The phytoplankton abundances in the coastal stations were significantly higher than offshore and island stations.In contrast,the nutrient and chlorophyll a(Chl a)concentrations and the phytoplankton biomass were quite low in all locations.Bacillariophyceae was dominated group(>75.1%for coastal,40.0%for offshore and 43.6%for island stations).In the algal bioassays,the phytoplankton production was stimulated by N availability.The in vivo Chl a values in the+N and+NP treatments were significantly higher than the values in the control and the+P treatments.Based on the field survey,the higher nutrients in coastal waters affected the growth of diatom assemblages,however,little prosperity of phytoplankton was observed in the offshore waters despite the injection of sufficient nutrients in bioassay experiments.The growth of phytoplankton depended on the initial cell density.All of results indicated that a dominant northwestern wind led to a limited nutrients condition at euphotic layers,and the low level of biomass supply from the coasts resulted in low primary production.Both supplying nutrients and introducing phytoplankton through the currents are critical to maintain the high productivity in the Ulleung Basin area of the East Sea.

关 键 词:Ulleung  Basin  Ulleungdo  and  Dokdo  spring  phytoplankton  blooms  episodic  windstorm  algal  bioassays  primary  production
收稿时间:2018/10/26 0:00:00

Specific oceanographic characteristics and phytoplankton responses influencing the primary production around the Ulleung Basin area in spring
Lee Minji,Kim Jin Ho,Kim Yun-Bae,Park Chan Hong,Shin Kyoungsoon,Baek Seung Ho.Specific oceanographic characteristics and phytoplankton responses influencing the primary production around the Ulleung Basin area in spring[J].Acta Oceanologica Sinica,2020,39(2):107-122.
Authors:Lee  Minji  Kim  Jin Ho  Kim  Yun-Bae  Park  Chan Hong  Shin  Kyoungsoon  Baek  Seung Ho
Institution:1.South Sea Research Institute, Korea Institute of Ocean Science and Technology, Geoje 53201, Korea2.Ulleungdo/Dokdo Ocean Science Station, Korea Institute of Ocean Science and Technology, Ulleungdo 40205, Korea3.Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology, Uljin 36315, Korea
Abstract:The East Sea (Sea of Japan) is a marginal, semi-closed sea in the northwestern Pacific. The Ulleung Basin area, which is located near the subpolar front of the East Sea, is known to have high primary production and good fisheries in spring season. After episodic wind-driven events during the spring of 2017, horizontal and vertical profiles of physical chemical biological factors were investigated at 29 stations located in the Ulleung Basin area. In addition, growth responses of phytoplankton communities to nutrient additions were evaluated by bioassay experiments to understand the fluctuation of phytoplankton biomass. Because of strong northwestern wind, phytoplankton biomass was scattered and upwelling phenomenon might be suppressed in this season. The phytoplankton abundances in the coastal stations were significantly higher than offshore and island stations. In contrast, the nutrient and chlorophyll a (Chl a) concentrations and the phytoplankton biomass were quite low in all locations. Bacillariophyceae was dominated group (>75.1% for coastal, 40.0% for offshore and 43.6% for island stations). In the algal bioassays, the phytoplankton production was stimulated by N availability. The in vivo Chl a values in the +N and +NP treatments were significantly higher than the values in the control and the +P treatments. Based on the field survey, the higher nutrients in coastal waters affected the growth of diatom assemblages, however, little prosperity of phytoplankton was observed in the offshore waters despite the injection of sufficient nutrients in bioassay experiments. The growth of phytoplankton depended on the initial cell density. All of results indicated that a dominant northwestern wind led to a limited nutrients condition at euphotic layers, and the low level of biomass supply from the coasts resulted in low primary production. Both supplying nutrients and introducing phytoplankton through the currents are critical to maintain the high productivity in the Ulleung Basin area of the East Sea.
Keywords:Ulleung Basin  Ulleungdo and Dokdo  spring phytoplankton blooms  episodic windstorm  algal bioassays  primary production
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号