首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental studies on sand plug formation in suction caisson during extraction
Authors:Yukun Zhang  Fuquan Chen
Institution:1. College of Civil Engineering, Fuzhou University, Fuzhou, China;2. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, PR China
Abstract:A series of model tests were conducted on Perspex-made suction caissons in saturated dense marine sand to study the sand plug formation during extraction. Suction caissons were extracted by pullout loading or by pumping air into the suction caisson. Effects of the pullout rates, aspect ratios and loading ways (monotonic or sustained) on the pullout capacity, and plug formation were investigated. It was found that the ultimate pullout capacity of the suction caisson increases with increasing the pullout rate. The sand plug formation under the pullout loading is significantly influenced by the pullout rate and the loading way. When the suction caisson is extracted at a relatively slow rate, the general sand boiling through the sand plug along the inner caisson wall occurs. On the contrary, the local sand boiling will occur at the bottom of the suction caisson subjected to a rapid monotonic loading or a sustained loading. Test results of the suction caisson extracted by pumping air into the caisson show that the pressure in the suction caisson almost follows a linear relationship with the upward displacement. The maximum pressures for suction caissons with aspect ratios of 1.0 and 2.0 during extraction by pumping air into the caisson are 1.70 and 2.27 times the maximum suction required to penetrate the suction caisson into sand. It was found that the sand plug moves downward during extraction by pumping air into the caisson and the variation in the sand plug height is mainly caused by the outflow of the sand particles from the inside of the suction caisson to the outside. When the suction caisson model is extracted under the pullout rate of 2?mm/s (0.28?mm/s for the prototype), the hydraulic gradient along the suction caisson wall increases to the maximum value with increasing the penetration depth and then reduces to zero. On the contrary, when extracted under the pullout rate of 10?mm/s (1.4?mm/s for the prototype), the hydraulic gradient along the suction caisson wall increases with increasing the pullout displacement. When extracted by pumping air into the caisson, the hydraulic gradient reaches the critical value, and at the same time, the seepage failure occurs around the suction caisson tip.
Keywords:Extraction  model test  monotonic and sustained pullout loading  sand plug  suction caisson
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号