首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Large deformation finite element analysis of the installation of suction caisson in clay
Authors:Yin Wang  Xingyun Zhu  Yang Lv  Qing Yang
Institution:1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China;2. Ocean Engineering Joint Research Center of DUT-UWA, Dalian University of Technology, Dalian, China;3. The Third Railway Survey and Design Institute Group Corporation, Tianjin, China
Abstract:The suction caisson (or called suction anchor) which is considered as a relatively new type of foundation of offshore structures, has been extensively studied and applied for offshore wind turbines and oil platforms. The installation of the suction caisson is of great importance in the design and construction because it can bring about several issues and further influence the performance of holding capacity in safety service. In this paper, large deformation finite element (FE) analyses are performed to model the installation of suction caisson (SC) by suction and jacking in normally consolidated clay. The penetration of the suction caisson is modeled using an axisymmetric FE approach with the help of the Arbitrary Lagrangian–Eulerian (ALE) formulation which can satisfactorily solve the large deformation problem. The undrained shear strength of the clay and elastic modulus are varied with depth of soil through the subroutine VUFIELD. The numerical results allow quantification of the penetration resistance and its dependence on the installation method. The centrifuge test and theoretical solution are used for the FE model validation. After the validation, the penetration resistance, the soil plug heave, and the caisson wall friction have been examined through the FE model. Based on the numerical results, it is shown that the ALE technique can simulate the entire suction caisson penetration without mesh distortion problem. The installation method can play an important role on the penetration resistance, namely, the suction installation reduces the penetration resistance significantly compared to the purely jacked installation. With a further study on the suction case, it is found that as the final applied suction pressure increases, the soil plug heave increases, while the penetration resistance reduces with increase of the final suction pressure. The effect of the friction of internal caisson walls has been also investigated and a conclusion is drawn that internal wall friction has a significant contribution to the penetration resistance and it can be implicitly represented by varying coefficient of internal wall friction. As for the penetration resistance, both jacked and suction installation have great dependency on the internal wall friction.
Keywords:Large deformation Fe analysis  penetration resistance  soil plug heave  suction caisson
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号