首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A navigational primitive: biorobotic implementation of cycloptic helical klinotaxis in planar motion
Authors:Long  JH  Jr Lammert  AC Pell  CA Kemp  M Strother  JA Crenshaw  HC McHenry  MJ
Institution:Program in Cognitive Sci., Vassar Coll., Poughkeepsie, NY, USA;
Abstract:A broad diversity of microorganisms and larval aquatic animals swim along a helical trajectory. Helical movement toward or away from stimuli involves the detection of gradients, alteration of the helical trajectory, and gradient tracking. Using sensory and neural circuitry models from swimming simulations of tadpole-like ascidian larvae (Phylum Chordata, Subphylum Urochordata), we built and tested a single-sensor, surface-swimming, tail-flapping robot that swims up a light gradient and holds station at an orbital around an area of high intensity. We implemented the same neural circuitry in a terrestrial, wheeled robot with a single photoresistor; it exhibited similar navigational behavior. We also mathematically modeled single-sensor robots navigating in plane. The simulated robots showed the importance of sensor placement and excitation field on navigational behavior. When the sensor placement and excitation field of the simulated robot matched that of the embodied robots, navigational behavior was similar. These results 1) tested and supported a proposed neural circuitry model, 2) showed the simplicity and effectiveness of using a single light sensor for navigation, and 3) demonstrated the use of helical motion in two dimensions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号