首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A model for variations in the range and depth dependence of thesound speed and attenuation induced by bubble clouds under wind-drivensea surfaces
Authors:Novarini  JC Keiffer  RS Norton  GV
Institution:Planning Syst. Inc., Long Beach, MS;
Abstract:When modeling sound propagation through the uppermost layers of the ocean, the presence of bubble clouds cannot be ignored. Their existence can convert a range-independent sound propagation problem into a range-dependent one. Measurements show that strong changes in sound speed and attenuation are produced by the presence of swarms of microbubbles which can be depicted as patchy clouds superimposed on a very weak background layer. While models suitable for use in acoustic calculations are available for the homogeneous bubble layer (which results from long time averages of the total bubble population), no similar parameterizations are available for the more realistic inhomogeneous bubble layer. Based on available information and within the framework of a classification scheme for bubble plumes proposed by Monahan, a model for the range and depth dependence of the bubbly environment is developed to fill this void. This model, which generates a possible realization of the bubbly environment, is then used to calculate the frequency-dependent change in the sound speed and attenuation induced by the presence of the bubble plumes. Time evolution is not addressed in this work
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号