首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterizing the thermal regime of cold vents at the northern Cascadia margin from bottom-simulating reflector distributions, heat-probe measurements and borehole temperature data
Authors:M Riedel  A M Tréhu  G D Spence
Institution:1. Natural Resources Canada, Geological Survey of Canada, Pacific, Sidney Subdivision, Sidney, BC, V8L4B2, Canada
2. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
3. School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
Abstract:Several cold vents are observed at the northern Cascadia margin offshore Vancouver Island in a 10 km2 region around Integrated Ocean Drilling Program Expedition 311 Site U1328. All vents are linked to fault systems that provide pathways for upward migrating fluids and at three vents methane plumes were detected acoustically in the water column. Downhole temperature measurements at Site U1328 revealed a geothermal gradient of 0.056 ± 0.004°C/m. With the measured in situ pore-water salinities the base of methane hydrate stability is predicted at 218–245 meters below seafloor. Heat-probe measurements conducted across Site U1328 and other nearby vents showed an average thermal gradient of 0.054 ± 0.004°C/m. Assuming that the bottom-simulating reflector (BSR) marks the base of the gas hydrate stability zone variations in BSR depths were used to investigate the linkages between the base of the gas hydrate stability zone and fluid migration. Variations in BSR depth can be attributed to lithology-related velocity changes or variations of in situ pore-fluid compositions. Prominent BSR depressions and reduced heat flow are seen below topographic highs, but only a portion of the heat flow reduction can be due to topography-linked cooling. More than half of the reduction may be due to thrust faulting or to pore-water freshening. Distinct changes in BSR depth below seafloor are observed at all cold vents studied and some portion of the observed decrease in the BSR depth was attributed to fault-related upwelling of warmer fluids. The observed decrease in BSR depth below seafloor underneath the vents ranges between 7 and 24 m (equivalent to temperature shifts of 0.07–0.15°C).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号