首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A survey of the Indian ocean triple junction trace within the Antarctic plate. Implications for the junction evolution since 15 Ma.
Authors:Ph Patriat  L Parson
Institution:(1) Institut de Physique du Globe de Paris, Place Jussieu, 75252 Paris cedex 05, France;(2) Deacon Laboratories, Institute of Oceanographic Sciences, Brook Road, GU8 5UB Wormley, U.K.
Abstract:The junction between oceanic crust generated, within the Antarctic plate, at the Southeast Indian Ridge and the Southwest Indian Ridge has been studied using a SEABEAM swathe bathymetry mapping system and other geophysical techniques between the Indian Ocean Triple Junction (approximately 25°S, 70° E), and a point some 500 km to the southwest (at 28°25prime S, 66°35prime E). The morphotectonic boundary which marks this trace of the ridge-ridge-ridge triple junction is complex and varies with age. Recent theories proposing a cyclicity of volcanic and tectonic processes at this mode of triple junctions appear to be supported by a series of regularly spaced, en echelon escarpments facing the slowly spreading (0.6 to 0.8 cm a-1, half rate) Southwest Indian Ridge axis. The en echelon escarpments intersect at approximately right angles with the regularly spaced oceanic spreading fabric formed on the Antarctic plate at the Southeast Indian Ridge and together locally flank uplifted northward-pointing lsquocornerrsquo sections of ocean floor. The origins for the localised elevations are unclear, but may relate to intermittent and/or alternating rifting and volcanic episodes. Variations of degree of asymmetry and/or obliquity in spreading on the Central Indian Ridge and the Southwest Indian Ridge are suggested to explain detailed structural changes along the triple junction trace. It is suggested that discontinuities of the trace may be related to an intermittent development of new spreading centres beneath the most easterly part of the Southwest Indian Ridge, coupled with a more continuous process beneath the faster spreading Central Indian Ridge (2 to 2.5 cm a-1) and the Southeast Indian Ridge (2.5 to 3 cm a-1). A detailed history of triple junction evolution may be thus inferred from basic morphological and structural mapping along the three triple junction traces.
Keywords:Indian Ocean  triple junction  accretion processes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号