首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Release into the environment of metals by two vascular salt marsh plants
Authors:Weis P  Windham L  Burke D J  Weis J S
Institution:Department of Radiology UMDNJ-New Jersey Medical School, Newark 07103, USA. weis@umdnj.edu
Abstract:Metals in contaminated salt marshes are mainly locked in the anaerobic layer of sediments, where they are tightly bound as sulfides and organic complexes. Vascular plants survive in saturated soils in part by pumping O2 into their root zones, changing their microenvironment to an oxic one. This, along with chelating exudates, mobilizes metals, allowing uptake by the roots. We compared the common reed Phragmites australis and cordgrass Spartina alterniflora in lab and field studies for ways in which they handle trace metals. Both plants store most of their metal burden in their roots, but some is transported to aboveground tissues. Spartina leaves contain approximately 2-3 x more Cr, Pb, and Hg than Phragmites leaves, but equivalent Cu and Zn. Furthermore, Spartina leaves have salt glands, so leaf excretion of all metals is twice that of Phragmites. In-depth studies with Hg indicate that Hg excretion correlates with Na release but not with transpiration, which is 2.2 x higher in Phragmites; and that more Hg accumulates in early-appearing leaves than in upper (i.e. later) leaves in both species. Spartina thus makes more metals available to salt marsh ecosystems than Phragmites by direct excretion and via dead leaves which will enter the food web as detritus.
Keywords:Spartina alterniflora  Phragmites australis  Salt marsh  Metals  Evapo-transpiration
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号