首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical evaluation of a subsea equipment installation method designed to avoid resonant responses
Institution:1. State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China;2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai, 200240, China;3. Department of Naval Architecture and Marine Engineering, University of Strathclyde, Glasgow, G11XQ, United Kingdom;1. Department of Civil and Environmental Engineering, National University of Singapore, Singapore;2. School of Civil and Environmental Engineering, Cornell University, USA;3. Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan;4. Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao, China
Abstract:Several methods have been employed to install the different types of subsea equipment that are required for offshore oil and gas production systems. More recently, the increasing development of oil fields at remote, ultra-deepwater scenarios has been requiring heavier and more complex subsea equipment. In such scenarios the usual installation methods have been facing increasing challenges, including resonance effects associated to the dynamic behavior of the cable-equipment system. In this context, after presenting a review of the state-of-the-art of installation methods for subsea equipment, this work presents a methodology for the design and evaluation of an installation method based on the combination of steel wire and polyester ropes. The goal is to obtain a feasible and safe installation method that can avoid resonance effects along all phases of the lowering procedure, without the need of specialized devices such as heave compensators, and using only simpler installation vessels such as standard tugboats instead of more expensive and specialized vessels (such as drilling rigs). The method is evaluated by numerical simulations for case studies considering representative metocean data for Brazilian ultra-deepwater scenarios, following a methodology that considers the random characteristic of actual sea states by employing an irregular spectral representation. The results indicate that the method may indeed be feasible for the deepwater installation of heavier equipment, potentially being more cost-effective especially for remote locations where other more complex methods might become inefficient.
Keywords:Subsea production systems  Subsea equipment  Installation method  Numerical simulation  Dynamic analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号