首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability of seawalls using modified pseudo-dynamic method under earthquake conditions
Institution:1. Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia;2. Faculty of Science, Engineering & Technology, Swinburne University of Science and Technology, Hawthorn, VIC, 3122, Australia
Abstract:By using the modified pseudo-dynamic method for submerged soils this paper explores the seismic stability of seawall for the active condition of earth pressure. Different forces such as seismic active earth pressure, seismic inertia forces of the wall, non-breaking wave pressure, hydrostatic and hydrodynamic pressures are considered in the stability analysis. Limit equilibrium has been used, and expressions for the factor of safety against sliding and overturning mode of failure have been proposed. The proposed methodology overcomes the limitations of existing pseudo-dynamic method for submerged soils. A detailed parametric study has been conducted by varying different parameters and results are presented in the form of design charts for computation of factor of safety against sliding and overturning mode of failures. It was noticed that the influences of soil friction angle, seismic acceleration coefficient, wall inclination and excess pore pressure are significant when compared to the other parameters. The value of factor of safety against the sliding mode of failure is increasing by about 62% when the value of soil frictional angle is increased from 30° to 40°. It was also found that the factor of safety against overturning mode of failure is decreasing by about 22% as the value of excess pore pressure ratio increases from 0 to 0.75. The proposed method with closed-form solutions can be used for the seismic design of seawalls.
Keywords:Sliding  Overturning  Seismic active earth pressure  Factor of safety  Hydrodynamic pressure  Hydrostatic pressure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号