首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wave interactions with multiple-row curtainwall-pile breakwaters
Authors:Chang-Hwan Ji  Kyung-Duck Suh
Institution:Department of Civil and Environmental Engineering, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744, Republic of Korea
Abstract:In this study, a mathematical model has been developed that can compute various hydrodynamic characteristics of a multiple-row curtainwall-pile breakwater. To examine the validity of the developed model, laboratory experiments have been conducted for double- and triple-row breakwaters with various combinations of drafts of curtain walls, porosities between piles, and distances between rows. Comparisons between measurement and prediction show that the mathematical model adequately reproduces most of the important features of the experimental results. As a whole, the transmission coefficient decreases with an increase in relative water depth, whereas the reflection coefficient, normalized run-up and force exhibit an opposite trend in their variations. With fixed values of the draft of the curtain wall and the porosity of lower perforated part of the first row of a double-row breakwater, as these values of the second row increase and decrease, respectively, the transmission coefficient decreases, as expected. On the other hand, their effects on wave reflection, run-up, and wave force change with the relative depth. As for the distance between the rows, the transmission coefficient becomes a maximum when it is about one half of the wave length, suggesting that this condition should be avoided to achieve the advantage of the breakwater in reducing wave transmission. It is shown that for prototype breakwaters, on an average, the transmission coefficient would be smaller than 0.3 for wave periods less than 6.0 s, and it would be about 0.45 even for the wave period of 9.0 s, although there would be a variation depending on the geometry of the breakwater. It is also shown that wave transmission is significantly reduced by multiple-row breakwaters compared with a single-row breakwater, while the difference between double-row and triple-row breakwaters is marginal. Finally, engineering monograms are provided for double-row breakwaters to be used in practical engineering applications of the breakwaters.
Keywords:Breakwaters  Curtain walls  Laboratory tests  Mathematical models  Pile structures  Wave forces  Wave reflection  Wave run-up
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号