首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions
Authors:Robert F Chen  G Bernard Gardner
Institution:Environmental, Coastal and Ocean Sciences, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125-3393, USA
Abstract:Chromophoric dissolved organic matter (CDOM) was measured in the spring and summer in the northern Gulf of Mexico with the ECOShuttle, a towed, instrumented, undulating vehicle. A submersible pump mounted on the vehicle supplied continuously flowing, uncontaminated seawater to online instruments in the shipboard laboratory and allowed discrete samples to be taken for further analysis. CDOM in the northern Gulf of Mexico was dominated by freshwater inputs from the Mississippi River through the Birdfoot region and to the west by discharge from the Atchafalaya River. CDOM was more extensively dispersed in the high-flow period in the spring but in both time periods was limited by stratification to the upper 12 m or so. Thin, subsurface CDOM maxima were observed below the plume during the highly stratified summer period but were absent in the spring. However, there was evidence of significant in situ biological production of CDOM in both seasons.The Mississippi River freshwater end member was similar in spring and summer, while the Atchafalaya end member was significantly higher in the spring. In both time periods, the Atchafalaya was significantly higher in CDOM and dissolved organic carbon (DOC) than the Mississippi presumably due to local production and exchange within the coastal wetlands along the lower Atchafalaya which are absent along the lower Mississippi. Nearshore waters may also have higher CDOM due to outwelling from coastal wetlands. High-resolution measurements allow the differentiation of various water masses and are indicative of rapidly varying (days to weeks) source waters. Highly dynamic but conservative mixing between various freshwater and marine end members apparently dominates CDOM distributions in the area with significant in situ biological inputs (bacterial degradation of phytoplankton detritus), evidence of flocculation, and minor photobleaching effects also observed. It is clear that high-resolution measurements and adaptive sampling strategies allow a more detailed examination of the processes that control CDOM distributions in river-dominated systems.
Keywords:CDOM  Mississippi  Dissolved organic carbon  Undulating vehicle  Fluorescence  Atchafalaya
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号