首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect on marine sediment nitrogen fluxes caused by organic matter enrichment with varying organic carbon structure and nitrogen content
Authors:Ingela Dahllf  Ida-Maja Karle
Institution:aDepartment of Marine Ecology, National Environmental Research Institute, Fredriksborgvej 300, 4000 Roskilde, Denmark;bDepartment of Analytical and Marine Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden
Abstract:Enrichments with five types of organic carbon, differing in nitrogen content and type of organic carbon, were made to a marine sediment in order to study effects on nitrogen fluxes. The enrichments used were Ulva lactuca, Ascophyllum nodosum, Zostera marina, Ceratium spp., lignin, and mixtures of U. lactuca and A. nodosum. Fluxes of ammonium, nitrate, and phosphate were measured in short-term (48 h) microcosm experiments, using a carbon enrichment loading similar to that at the sampling site. Changes in microbial community growth and structure due to three types enrichments were also detected using molecular methods in a microcosm experiment run for 4 days to allow for detection at DNA-level.Ammonium fluxes changed from an efflux in the control to an influx for all enrichments apart from U. lactuca. The change was significantly related to the added material's C:N ratio when Ceratium spp. was excluded. All enrichments induced an influx of nitrate suggesting the formation of anoxic micro zones, but there was no relationship with C:N ratio. Instead, the magnitude of the nitrate influx is suggested to be related to the structure of the organic carbon, where enrichments containing a large pool of cellulose and lignin (Z. marina and lignin) gave rise to a lower influx, compared to algal material with more easily degraded organic matter like lipids and starch, which induced the highest influx of nitrate (Ceratium spp., U. lactuca, and A. nodosum). The occurrence of an ammonium influx together with increased nitrate influx and a lower efflux of phosphate in the enrichments suggests a growth of heterotrophic bacteria. This was also confirmed using molecular methods (PCR-DGGE) where the relative abundance of bacterial species in the enrichments increased.The sum of ammonium and nitrate fluxes showed that total nitrogen removal was enhanced in all enrichments compared to the nonenriched control sediment, but in different ways. Ceratium spp. induced the highest removal followed by A. nodosum, U. lactuca, Z. marina, and lastly, by lignin. The same pattern was observed also in a second experiment. These results indicate that easily degradable organic carbon, together with a lower C:N ratio of the added material, will remove nitrogen from the water phase, making the recycling of nitrogen to the overlying water mass smaller.
Keywords:Nitrogen fluxes  Organic carbon content  DGGE
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号