首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the relevance of iron adsorption to container materials in small-volume experiments on iron marine chemistry: Fe-aided assessment of capacity, affinity and kinetics
Authors:AC Fischer  JJ Kroon  TG Verburg  T Teunissen  HTh Wolterbeek
Institution:aDepartment of Radiation, Radionuclides & Reactors, Section RIH (Radiation and Isotopes for Health), Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
Abstract:Iron chemistry in seawater has been extensively studied in the laboratory, mostly in small-volume sample bottles. However, little has been reported about iron wall sorption in these bottles. In this paper, radio-iron 55Fe was used to assess iron wall adsorption, both in terms of capacity, affinity and kinetics. Various bottle materials were tested. Iron sorption increased from polyethylene/polycarbonate to polymethylmetacrylate (PMMA)/high-density polyethylene/polytetrafluoroethylene to glass/quartz, reaching equilibrium in a 25–70 h period. PMMA was studied in more detail: ferric iron (Fe(III)) adsorbed on the walls of the bottles, whereas ferrous iron (Fe(II)) did not. Considering that in seawater the inorganic iron pool mostly consists of ferric iron, the wall will be a factor that needs to be considered in bottle experiments.The present data indicate that for PMMA with specific surface (S)-to-volume (V) ratio S/V, both iron capacity (42 ± 16 × 10− 9 mol/m2 or 1.7 × 10− 9 mol/L recalculated for the S/V-specific PMMA bottles used) and affinity (log KFe'W = 11.0 ± 0.3 m2/mol or 12.4 ± 0.3 L/mol, recalculated for the S/V-specific PMMA bottles used) are of similar magnitude as the iron capacity and -affinity of the natural ligands in the presently used seawater and thus cannot be ignored.Calculation of rate constants for association and dissociation of both Fe'L (iron bound to natural occurring organic ligands) and Fe'W (iron adsorbed on the wall of vessels) suggests that the two iron complexes are also of rather similar kinetics, with rate constants for dissociation in the order of 10 −4–10− 5 L/s and rate constants for association in the order of 108 L/(mol s). This makes that iron wall sorption should be seriously considered in small-volume experiments, both in assessments of shorter-term dynamics and in end-point observations in equilibrium conditions. Therefore, the present data strongly advocate making use of iron mass balances throughout in experiments in smaller volume set-ups on marine iron (bio) chemistry.
Keywords:Fe  Wall sorption  Seawater  Capacity  Affinity  Kinetics  Dissociation  Association  PMMA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号