首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stable isotope ratios in Cape gannets around the southern coasts of Africa reveal penetration of biogeographic patterns in oceanic signatures
Authors:Sébastien Jaquemet  Christopher McQuaid
Institution:Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
Abstract:The southern coasts of Africa are influenced by two major oceanic currents, leading to biogeographic patterns in inshore and offshore species assemblages, and in the stable isotope signatures of suspended particulate matter and filter-feeding mussels. We used the stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) from the blood and feathers of adult and chick Cape gannets (Morus capensis) to investigate whether the geographic differences observed at the lower levels in the marine communities are deep penetrating effects that reach top predators. Additionally, we evaluated whether trophic segregation occurs between adult and reared chick gannets, and whether a shift to wintering habitat occurs in adults. The study was conducted during the 2006 breeding season on Bird Island in the Agulhas system, and on Malgas and Ichaboe Islands, in the south and north Benguela respectively. Our results showed significant differences in the isotope ratios of members of different colonies, but no intra-colony differences between tissues or age groups. These results indicate that there is neither age-related nor temporal segregation in the diet of members of the same colony. Feather isotopic values suggest that adults remain all year round in the same habitats, and do not undertake long migration after reproduction. Since all gannets tend to target similar prey, we attributed among-colony differences in isotope signatures mostly to the oceanic conditions experienced by the main prey of birds rather than substantial differences in diet composition. Overall, isotopic signatures segregate the two current systems, with depleted carbon values in the Agulhas and enriched nitrogen values in the upwelled waters of the Benguela. Within the Benguela birds from Ichaboe in the north had higher δ15N values than those from Malgas in the south, which we attributed to differences in the functioning of the upwelling cells in the vicinity of the two colonies. Finally, slight variation in the proportion of main prey and discards from fisheries may contribute to the variation in the stable-isotope signatures between colonies in the Benguela.
Keywords:δ13C  δ15N  upwelling  Agulhas  Benguela  seabirds  Morus capensis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号