首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contributions of mineral and organic components to tidal freshwater marsh accretion
Authors:Scott C Neubauer
Institution:Baruch Marine Field Laboratory, University of South Carolina, PO Box 1630, Georgetown, SC 29442, USA
Abstract:Vertical accretion in tidal marshes is necessary to prevent submergence due to rising sea levels. Mineral materials may be more important in driving vertical accretion in tidal freshwater marshes, which are found near the heads of estuaries, than has been reported for salt marshes. Accretion rates for tidal freshwater marshes in North America and Europe (n = 76 data points) were compiled from the literature. Simple and multiple linear regression analyses revealed that both organic and mineral accumulations played a role in driving tidal freshwater marsh vertical accretion rates, although a unit mass of organic material contributed ∼4 times more to marsh volume than the same mass input of mineral material. Despite the higher mineral content of tidal freshwater marsh soils, this ability of organic matter to effectively hold water and air in interstitial spaces suggests that organic matter is responsible for 62% of marsh accretion, with the remaining 38% from mineral contributions. The organic material that helps to build marsh elevation is likely a combination of in situ production and organic materials that are deposited in association with mineral sediment particles. Regional differences between tidal freshwater marshes in the importance of organic vs. mineral contributions may reflect differences in sediment availability, climate, tidal range, rates of sea level rise, and local-scale factors such as site elevation and distance to tidal creeks. Differences in the importance of organic and mineral accumulations between tidal freshwater and salt marshes are likely due to a combination of factors, including sediment availability (e.g., proximity to upland sources and estuarine turbidity maxima) and the lability of freshwater vs. salt marsh plant production.
Keywords:sedimentation  accumulation  soils  wetlands  coastal marshes  sea level changes  United States  Europe
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号