首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sedimentation and Boundary Changes of Virginia Salt Marshes
Authors:Jessica A Kastler  Patricia L Wiberg
Institution:Department of Environmental Sciences, Clark Hall, University of Virginia, Charlottesville, VA 22903, U.S.A.
Abstract:Sediment collections on a mainland fringing marsh, a lagoon marsh and a barrier island fringing marsh were conducted in conjunction with Geographic Information Systems (GIS) analysis of aerial photographs to relate changes in marsh area to sedimentary processes. The island marsh lost 7·2% of its area in 8 years by overwash. The lagoon marsh lost 10·6% of its area over 41 years by recession of marsh edges. The mainland marsh area increased by 8·2% over 50 years, primarily by upland encroachment. Surface sediment was collected monthly at the mainland and lagoon marshes for 1 year to identify changes in the mean grain size, organic content and mass of sediment deposited on sampling plates. Short-term variability in these characteristics obscured seasonal differences. Grain size and monthly sediment accumulation decreased towards the interior of both marshes, while the organic matter content increased. On the lagoon marsh, coarse sediment at creekside stations, as well as grain size contrasts between surface and subsurface sediment, are consistent with erosion evident in GIS analysis. On the mainland marsh, sediment does not vary as much with location or depth, and topography appears stable. Tidal currents appear to be competent to resuspend most particle sizes represented in surface sediment samples, including aggregates, except at the edge of the lagoon site. Decreasing rates of marsh edge change reflect moderation of oceanic processes, while the interior of both lagoon and mainland marshes remained stable throughout the study. Both lagoon marsh losses to recession and mainland marsh gains from upland reflect the submergence which this shoreline experiences.
Keywords:salt marshes  sedimentation  submergence  particle size distribution  aggregates  Virginia Coast
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号