首页 | 本学科首页   官方微博 | 高级检索  
     检索      

南海礼乐盆地海底麻坑地貌及成因分析
引用本文:张田升,吴自银,赵荻能,李守军,尚继宏,高金耀,周洁琼,刘洋,朱超,鲁号号.南海礼乐盆地海底麻坑地貌及成因分析[J].海洋学报,2019,41(3):106-120.
作者姓名:张田升  吴自银  赵荻能  李守军  尚继宏  高金耀  周洁琼  刘洋  朱超  鲁号号
作者单位:自然资源部第二海洋研究所,浙江 杭州 310012;国家海洋局海底科学重点实验室,浙江 杭州 310012;自然资源部第二海洋研究所,浙江 杭州 310012;国家海洋局海底科学重点实验室,浙江 杭州 310012;浙江大学 地球科学学院,浙江 杭州 310027;自然资源部第二海洋研究所,浙江 杭州 310012;国家海洋局海底科学重点实验室,浙江 杭州 310012;山东科技大学 测绘科学与工程学院,山东 青岛 266590;自然资源部第二海洋研究所,浙江 杭州 310012;国家海洋局海底科学重点实验室,浙江 杭州 310012;南京大学 地理与海洋科学学院,江苏 南京 210023
基金项目:国家自然科学基金(41830540,41476049);SOED国重室自主课题(SOEDZZ1802);全球海气相互作用专项;科技基础性工作专项(2013FY112900)
摘    要:本文基于高分辨率多波束测深和浅地层剖面数据,首次对南海礼乐盆地南部坳陷海底麻坑进行了系统的识别研究。共识别出各类麻坑81个,其中麻坑直径最大约2.4 km,坑深最大约157 m。麻坑种类多样:按平面形态主要分为圆形、椭圆形、拉长形和新月形麻坑;按组合方式分为孤立麻坑、链状麻坑和复合麻坑;按直径分为正常麻坑和大型麻坑。区域内发育多条大型海底峡谷,峡谷侵蚀引起两侧地层稳定性降低,气体储层遭受破坏,泄露的气体沿断层或气烟囱等喷发出海底形成麻坑。而因麻坑生成时剥蚀的沉积物质与周围水体混合并逐渐发展成浊流,在一定程度上促进海底峡谷向下延伸。研究区内单个麻坑的平面形态最初为圆形或椭圆形,之后由于重力流和峡谷侵蚀的影响,逐渐发展成拉长形或新月形,麻坑之间也会发生组合形成复合麻坑。链状麻坑与冲沟的形成联系密切,沿垂直于等深线方向展布的链状麻坑在重力流的冲刷下,发育成底部平坦的麻坑冲沟。对比分析全球其他海域麻坑,发现海底麻坑尺寸与水深关系密切,在深水区域更容易发育大型麻坑。

关 键 词:海底麻坑  海底峡谷  分类  演化
收稿时间:2018/2/28 0:00:00
修稿时间:2018/5/10 0:00:00

The morphologies and genesis of pockmarks in the Reed Basin, South China Sea
Zhang Tiansheng,Wu Ziyin,Zhao Dineng,Li Shoujun,Shang Jihong,Gao Jinyao,Zhou Jieqiong,Liu Yang,Zhu Chao and Lu Haohao.The morphologies and genesis of pockmarks in the Reed Basin, South China Sea[J].Acta Oceanologica Sinica (in Chinese),2019,41(3):106-120.
Authors:Zhang Tiansheng  Wu Ziyin  Zhao Dineng  Li Shoujun  Shang Jihong  Gao Jinyao  Zhou Jieqiong  Liu Yang  Zhu Chao and Lu Haohao
Institution:Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China;School of Earth Sciences, Zhejiang University, Hangzhou 310027, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China;College of Geomrtics, Shandong University of Science and Technology, Qingdao 266590, China and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;Key Laboratory of the Sub-marine Geosciences, State Oceanic Administration, Hangzhou 310012, China;School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
Abstract:This paper systematically identified the submarine pockmarks in the southern depression of the Reed Basin in the South China Sea for the first time, based on high-resolution multi-beam bathymetric data and sub-bottom profiles. A total of 81 pockmarks have been identified, and the maximum diameter of them reaches almost 2.4 km, and the maximum depth is 154 m. The types of pockmarks are various: they can be divided into circular, elliptical, elongated and crescent pockmarks based on plane shape; they also fall into isolated pockmarks, pockmark chains and pockmark complex based on their distribution; and they can be divided into normal pockmarks and mega-pockmarks according to their diameters as well. A number of large-scale submarine canyons have been developed in the study area. Canyon erosion has caused instability of stratigraphy in both sides that accelerates the collapse of gas hydrate. Leaked gas has been ejected from the seabed along faults or gas chimneys to form pockmarks. Meanwhile, the turbidity currents, generated by mixing the eroded sediments during the formation of pockmarks with the surrounding water, to a certain extent, have promoted the downward extension of the submarine canyons. The plane shape of the isolated pockmarks in the study area presents in circular or elliptical, then have evolved into elongated or crescent with the influence of gravity flows and canyon erosion, and finally some of them have been merged with each other to form pockmark complex. The pockmark chains are closely related to the formation of the gully, and the pockmark chains spreading in the direction perpendicular to the contour line, can evolve into pockmark gullies with smooth bottom under the scour of the gravity flows. Comparing with the parameters of pockmarks in other areas of the world, it is found that the size of the pockmarks has a close link to the water depth, and it is easier to develop mega-pockmarks in deep water areas.
Keywords:submarine pockmarks  canyons  classification  evolution
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号