首页 | 本学科首页   官方微博 | 高级检索  
     检索      

波浪-海流-微地形耦合的沉积动力模式建立及应用
引用本文:芦静,夏长水,滕涌,刘学海.波浪-海流-微地形耦合的沉积动力模式建立及应用[J].海洋学报,2017,39(7):12-25.
作者姓名:芦静  夏长水  滕涌  刘学海
作者单位:1.中国海洋大学 海洋与大气学院, 山东 青岛 266100;国家海洋局第一海洋研究所 海洋环境科学和数值模拟国家海洋局重点实验室, 山东 青岛 266061
基金项目:国家自然科学基金项目(41072176);中央级公益性科研院所基本科研业务费专项(2014T01,2015P03);国家重点研发计划课题(2016YFC0503602,2016YFB0201103,2017YFA0604101,2017YFA0604104);留学回国人员科技活动项目择优资助。
摘    要:沙纹微地形普遍存在于海底,沙纹的消长能改变底部应力进而影响泥沙的运移。以往研究较多侧重于波致沙纹,并已应用于波浪模式的底摩擦计算,而较少考虑波流联合效应产生的沙纹,也未将其应用于综合的水动力模式和沉积物输运模式。本文在POM水动力模式中嵌入新南威尔士大学泥沙模式,通过耦合波流共同作用的微地形模型与波流相互作用底边界层模型,发展了波浪-海流-微地形(沙纹)耦合的沉积动力模式。本文将该模式应用于澳大利亚Jervis湾,针对波主导和波流联合主导沙纹两种类型,分别进行了沙纹发展状态、几何形态的分布及悬浮泥沙的模拟。结果表明:波致沙纹比波流联合作用的沙波具有更大的波高和波长,因此当波主导时沙纹对悬浮泥沙起着关键作用。通过考虑随沙纹变化的粗糙度,相比于以往模式设置均一的粗糙度,该模型能对悬浮物浓度的骤升过程进行更精细的预测。

关 键 词:沉积动力模式    波流耦合    微地形    沙纹    底边界层    底粗糙度    悬浮泥沙
收稿时间:2016/10/14 0:00:00
修稿时间:2016/12/13 0:00:00

Developing the wave-current-microtopography coupled model of sediment dynamics and its applications
Lu Jing,Xia Changshui,Teng Yong and Liu Xuehai.Developing the wave-current-microtopography coupled model of sediment dynamics and its applications[J].Acta Oceanologica Sinica (in Chinese),2017,39(7):12-25.
Authors:Lu Jing  Xia Changshui  Teng Yong and Liu Xuehai
Institution:1.College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China;Key Lab of Marine Science and Numerical Modeling, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China2.Key Lab of Marine Science and Numerical Modeling, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
Abstract:Ripple microtopography prevalently exist on coastal beds, which significantly change the bottom stress and then influence the sediment transport. Previous researchers mainly study the wave-dominant ripples and have applied them to the wave modelling. Wave-current combined flow is rarely discussed to generate ripples, and the combined flow-dominant ripples are rarely implemented to hydrodynamic and sediment models. We embedded the University of New South Wales sediment model into the POM model, and connected them with a wave-current interaction bottom boundary model coupled with a microtopography module under combined flow. We developed a wave-current-microtopography coupled model of sedimentology dynamics, and applied this coupled model to Jervis Bay, Australia. Developing stages and types are modeled, and the ripple height and length are simulated. The suspended sediment transport was analyzed under wave-dominant and combined flow separately. Simulated results show that the wave-dominant ripples have longer height and length. Therefore, ripples place an important role on suspended sediment when waves dominate. Through considering roughness that varies with microtopography, this model can predict the abrupt rising of suspended sediment concentration rather than setting an average uniform roughness.
Keywords:sediment dynamical model  wave-current coupling  microtopography  ripples  bottom boundary layer  roughness  suspended sediments
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号