首页 | 本学科首页   官方微博 | 高级检索  
     检索      

牙鲆选育F3代家系的建立及遗传效应分析
引用本文:田永胜,陈红林,齐文山,姜静,张英平,刘万军,李宝玉,刘寿堂,孙德强,陈松林.牙鲆选育F3代家系的建立及遗传效应分析[J].海洋学报,2015,37(4):40-51.
作者姓名:田永胜  陈红林  齐文山  姜静  张英平  刘万军  李宝玉  刘寿堂  孙德强  陈松林
作者单位:1.中国水产科学研究院 黄海水产研究所 农业部海洋渔业可持续发展重点实验室, 山东 青岛 266071
基金项目:"863"高技术研究发展计划(2012AA10A408);国家自然科学基金(31372510);上海海洋大学研究生科研基金(A1-0209-14-0900-37);山东省泰山学者建设工程专项资助.
摘    要:牙鲆是太平洋西岸海水养殖、捕捞和自然增殖的主要鱼类,但是人工养殖病害多、生长慢,针对这一问题,从2003年开始开展了牙鲆选择育种。本文利用筛选和培育的F1、F2代牙鲆家系核心群体,构建了F3代家系52个,在生长到196d时,对家系1 560尾鱼苗全长、体宽、体质量、全长日增量和体重日增量5个生长性状进行测量和计算,获得7 800个数据。采用"加性-显性"线性模型、最小范数二阶无偏估计法(MINQUE)对以上生长性状的边际平均值、加性方差分量、显性方差分量、随机方差分量、狭义遗传力、广义遗传力、亲本加性效应、杂交随机效应等遗传参数进行了评估。结果显示:1202、1206、1226和1211家系以上生长性状的边际平均值同时显著高于其他家系。以上5个生长性状的加性方差分量比率为(0.099±0.01)~(0.24±0.02),显性方差分量比率(0.30±0.02)~(0.31±0.02),随机方差分量比率(0.48±0.02)~(0.61±0.01),5个性状狭义遗传力0.099~0.24,广义遗传力0.38~0.54,以上遗传参数均达极显著性水平(P0.01)。综合比较18个亲本5个性状的加性效应预测值,发现F0917、F0908、F0905、F0915、F09125和KS(韩国牙鲆)亲本在5个性状上都具有极显著的正向效应(P0.01),其他亲本5个性状都不同程度的表现为显著(P0.05)或极显著(P0.01)的负向加性效应。对42个杂交组合显性随机效应进行预测,D(2×6)、D(2×18)、D(3×4)、D(7×12)、D(7×14)和D(8×13)6个杂交组合在5个性状上都表现为极显著(P0.05)正效应,利用这些杂交组合建立家系将促进牙鲆以上5个性状的生长。本文研究结果,为牙鲆优良家系的建立及新品种的培育初步筛选出了性状优良的亲本、杂交组合和家系,同时为牙鲆进一步选择育种提供了理论和技术依据。

关 键 词:牙鲆    F3代家系    遗传力    加性效应    显性效应
收稿时间:2014/7/15 0:00:00
修稿时间:2014/12/17 0:00:00

Establishment and estimated genetic effects of Paralichthys olivaceus F3 families
Tian Yongsheng,Chen Honglin,Qi Wenshan,Jiang Jing,Zhang Yingping,Liu Wanjun,Li Baoyu,Liu Shoutang,Sun Deqiang and Chen Songlin.Establishment and estimated genetic effects of Paralichthys olivaceus F3 families[J].Acta Oceanologica Sinica (in Chinese),2015,37(4):40-51.
Authors:Tian Yongsheng  Chen Honglin  Qi Wenshan  Jiang Jing  Zhang Yingping  Liu Wanjun  Li Baoyu  Liu Shoutang  Sun Deqiang and Chen Songlin
Institution:Key Laboratory for Sustainable Utilization of Marine Fishery Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China,Key Laboratory for Sustainable Utilization of Marine Fishery Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China,Key Laboratory for Sustainable Utilization of Marine Fishery Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China,Key Laboratory for Sustainable Utilization of Marine Fishery Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China,Key Laboratory for Sustainable Utilization of Marine Fishery Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China,Key Laboratory for Sustainable Utilization of Marine Fishery Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;Ocean University of China, Qingdao 266003, China,Huanghai Aquaculture Ltd., Haiyang 265100, China,Huanghai Aquaculture Ltd., Haiyang 265100, China,Huanghai Aquaculture Ltd., Haiyang 265100, China and Key Laboratory for Sustainable Utilization of Marine Fishery Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Abstract:Paralichthys olivaceus is the major species for marine aquaculture and fisheries on the western Pacific coast. Due to the high disease incidence and slow growth rate observed in artificial-breeding programs,the selective breeding of Japanese flounder has been pursued since the beginning of this century. Here,we established 52 F3 families based on the screened F1 and F2 core families that we bred previously. Approximately 196 days after hatching,we measured five growth traits of 1 560 fry from the 52 families,for a total of 7 800 data points. An "A-D" model and MINQUE were used to estimate the marginal mean,additive-variance component,dominance-variance component,random-variance component,narrow-sense heritability,broad-sense heritability,parental additive effect and random hybridization effect of each trait. The additive-variance component ratios of the five traits were between (0.099±0.01) and (0.24±0.02); the dominance-variance component ratios were between (0.30±0.02) and (0.31±0.02); the random-variance component ratios were between (0.48±0.02) and (0.61±0.01); the narrow-sense heritabilities were between 0.099 and 0.24; and the broad-sense heritabilities were between 0.38 and 0.54. Each of these genetic parameters showed highly significant differences (p <0.01). The random dominance effects of 42 crosses were predicted,and D(2×6),D(2×18),D(3×4),D(7×12),D(7×14) and D(8×13) all showed highly significant positive effects (p <0.01) on the five traits. The results of this study provide a preliminary set of optimal parental lines,crosses and families to establish improved Japanese flounder strains. These results also provide a theoretical and technical foundation for further selective breeding.
Keywords:japanese flounder  Paralichthys olivaceus  F3 family  heritability  additive effect  dominance effect
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号