首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parametric Vibration Analysis of Submerged Floating Tunnel Tension Legs
Authors:SUN Sheng-nan  SU Zhi-bin  FENG Yun-fen  XU Xian-yi
Institution:School of Architecture and Civil Engineering
Abstract:According to the characteristics of submerged floating tunnel anchored by tension legs, simplifying the tube as point mass and assuming that the tension leg is a nonlinear beam model hinged at both ends, the nonlinear vibration equation of the tension leg is derived. The equation is solved by the Galerkin method and Runge-Kutta method.Subsequently, numerical analysis of typical submerged floating tunnel tension leg is carried out. It is shown that, the parametric vibration response of the submerged floating tunnel tension leg is related to the amplitude and frequency of the end excitation. Without considering axial resonance and transverse resonance, it is reasonable that higher order modes are abandoned and only the first three modes are considered. The axial resonance amplitude of the second or third order mode is equivalent to the first order mode axial resonance amplitude, which should not be ignored.
Keywords:submerged floating tunnel  tension leg  parametric vibration  numerical analysis
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国海洋工程》浏览原始摘要信息
点击此处可从《中国海洋工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号