首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ray Theory Application in Long Baseline System
作者姓名:冀大雄  刘健
作者单位: 
摘    要:The long baseline (LBL) system is widely used to locate and track autonomous underwater vehicles (AUV) through acoustic communication.Three important issues are presented here in LBL system application with AUV.Those issues which regard the normal acoustic communication between LBL system and AUV are the depth of towed array,the length of beacon cable,and the effective area of the AUV.The first issue is the key of the LBL system,which ensures the normal communication between towed array and beacons.The second issue which impacts the normal communication from the AUV to beacons in available range should be considered after the first one has been settled.Then the last issue determines the safe work area of the AUV.The ordinary differential equations (ODE) algorithm of ray is deduced from Snell′s law.The ODE algorithm is applied to obtain sound rays from sound source to receiver.These problems are solved by the judgment that whether rays pinging from a sound source arrives at a receiver.The sea trial shows that these methods have much validity and practicality.

关 键 词:系统理论  长基线  应用  水下机器人  常微分方程  机器人系统  安全工作区  定位跟踪

Ray Theory Application in Long Baseline System
Institution:State Key laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
Abstract:The long baseline (LBL) system is widely used to locate and track autonomous underwater vehicles (AUV) through acoustic communication. Three important issues are presented here in LBL system application with AUV. Those issues which regard the normal acoustic communication between LBL system and AUV are the depth of towed array, the length of beacon cable, and the effective area of the AUV. The first issue is the key of the LBL system, which ensures the normal communication between towed array and beacons. The second issue which impacts the normal communication from the AUV to beacons in available range should be considered after the first one has been settled. Then the last issue determines the safe work area of the AUV. The ordinary differential equations (ODE) algorithm of ray is deduced from Snell's law. The ODE algorithm is applied to obtain sound rays from sound source to receiver. These problems are solved by the judgment that whether rays pinging from a sound source arrives at a receiver. The sea trial shows that these methods have much validity and practicality.
Keywords:effective area  long baseline  beacon cable  soundtrack  AUV
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中国海洋工程》浏览原始摘要信息
点击此处可从《中国海洋工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号