首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于T/P和Jason-1/2卫星高度计海面高度数据获取南海同潮图的研究
引用本文:郑好,李晓春,王道胜,蒋浩宇,赵恩金.基于T/P和Jason-1/2卫星高度计海面高度数据获取南海同潮图的研究[J].海洋科学,2019,43(7):61-71.
作者姓名:郑好  李晓春  王道胜  蒋浩宇  赵恩金
作者单位:中国地质大学(武汉) 海洋学院, 湖北 武汉 430074;中国地质大学深圳研究院, 广东 深圳 518057;中国地质大学(武汉) 海洋学院, 湖北 武汉 430074;中国地质大学深圳研究院, 广东 深圳 518057;中国地质大学(武汉) 海洋学院, 湖北 武汉 430074;中国地质大学深圳研究院, 广东 深圳 518057;中国地质大学(武汉) 海洋学院, 湖北 武汉 430074;中国地质大学深圳研究院, 广东 深圳 518057;中国地质大学(武汉) 海洋学院, 湖北 武汉 430074;中国地质大学深圳研究院, 广东 深圳 518057
基金项目:国家重点研发计划项目(2017YFC1404700);深圳市科技创新委员会基础研究学科布局项目(20170418);广东省促进经济发展专项资金(海洋经济发展用途)项目(GDME-2018E001);中国地质大学(武汉)2018年研究生教育教学改革项目基金(YJG2018219);北海市科学研究与技术开发计划项目(北科合201995036)
摘    要:随着卫星高度计资料的不断丰富,通过对卫星高度计所得潮汐调和常数进行插值或拟合得到潮汐同潮图成为可能。本文拟对T/P(TOPEX/POSEIDON)、Jason-1和Jason-2卫星高度计数据进行分析,得到南海区域星下观测点处四个主要分潮(M2、S2、K1和O1分潮)的调和常数,进而利用双调和样条插值方法对其进行插值,获取南海同潮图。首先,以1992~2016年T/P和Jason卫星高度计所得海面高度数据为基础,利用调和分析方法计算了南海星下观测点处M2、S2、K1和O1四个主要分潮的调和常数,并与40个验潮站数据进行了对比,最大矢量均差为4.99cm,说明分析所得调和常数与利用验潮站资料提取的调和常数的误差较小。进而采用双调和样条插值方法对星下点调和常数进行插值,得到了南海四个主要分潮的同潮图,所得结果与全球潮汐模型TPXO7.2模式结果的矢量均差分别为4.69、2.46、3.13和2.42 cm,与141个验潮站处观测结果的矢量均差分别为22.59、10.26、10.24和8.51 cm。此外,插值所得四个主要分潮的无潮点位置与前人研究结果相近。上述实验结果表明:利用双调和样条插值方法对卫星高度计所得调和常数进行插值能够获取较为准确的同潮图。

关 键 词:卫星高度计  双调和样条插值  同潮图
收稿时间:2019/1/2 0:00:00
修稿时间:2019/3/31 0:00:00

Extraction of cotidal charts in the South China Sea from sat-ellite altimeter sea surface height data
ZHENG Hao,LI Xiao-chun,WANG Dao-sheng,JIANG Hao-yu and ZHAO En-jin.Extraction of cotidal charts in the South China Sea from sat-ellite altimeter sea surface height data[J].Marine Sciences,2019,43(7):61-71.
Authors:ZHENG Hao  LI Xiao-chun  WANG Dao-sheng  JIANG Hao-yu and ZHAO En-jin
Institution:College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China;Shenzhen Research Institute, China University of Geosciences, Shenzhen 518057, China,College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China;Shenzhen Research Institute, China University of Geosciences, Shenzhen 518057, China,College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China;Shenzhen Research Institute, China University of Geosciences, Shenzhen 518057, China,College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China;Shenzhen Research Institute, China University of Geosciences, Shenzhen 518057, China and College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China;Shenzhen Research Institute, China University of Geosciences, Shenzhen 518057, China
Abstract:With the continuous enrichment of satellite altimeter data, it becoms possible to obtain cotidal charts by interpolating or fitting the tidal harmonic constants derived from the satellite altimeter data. The satellite altimeter data, derived from T/P, Jason-1and Jason-2, are analyzed to obtain the harmonic constants of the four major tidal constituents, including M2, S2, K1 and O1 constituents, at satellite tracking points, which will be interpolated by using the biharmonic spline interpolation method to obtain the corresponding cotidal charts in the South China Sea (SCS). Firstly, the harmonic constants of four major tidal constituents (M2, S2, K1 and O1 constituents) at satellite tracking points in SCS are obtained by using the harmonic analysis based on the sea surface height in the satellite altimeter data. Comparison of 40 matching pairs between satellite tracking points and tidal stations shows that the maximum value of averaged vectorial difference is 4.99 cm, indicating that the harmonic constants from altimeter data are relatively accurate. Then, cotidal charts of the four major tidal constituents in SCS are obtained by spatially interpolating the harmonic constants with the biharmonic spline interpolation method. The averaged vectorial difference between the interpolation results and the results in the TPXO7.2 model are 4.69, 2.46, 3.13 and 2.42 cm for the M2, S2, K1 and O1 constituents, respectively, and those between the interpolation results and the observed results at tidal stations data are 22.59, 10.26, 10.24 and 8.51 cm. Furthermore, the positions of the amphidromic points for the four major tidal constituents in the interpolated results are close to those in previous studies. The aforementioned experimental results show that the cotidal charts can be obtained by interpolating the tidal harmonic constants, derived from satellite altimeter data, with the biharmonic spline interpolation method.
Keywords:satellite altimetry  biharmonic spline interpolation  cotidal charts
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《海洋科学》浏览原始摘要信息
点击此处可从《海洋科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号