首页 | 本学科首页   官方微博 | 高级检索  
     检索      

考洲洋牡蛎养殖海域海-气界面CO2交换通量的时空变化
引用本文:彭鹏飞,马媛,史荣君,王迪,许欣,颜彬.考洲洋牡蛎养殖海域海-气界面CO2交换通量的时空变化[J].海洋科学,2022,46(10):140-149.
作者姓名:彭鹏飞  马媛  史荣君  王迪  许欣  颜彬
作者单位:国家海洋局南海调查技术中心 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510300;中国水产科学研究院南海水产研究所广东省渔业生态环境重点实验室, 广东 广州 510300
基金项目:广东省促进经济发展专项资金(GDME-2018E006);广东省渔业生态环境重点实验室开放基金项目(FEEL-2017-6)
摘    要:根据2018年7月、11月和2019年1月、4月对广东考洲洋牡蛎养殖海域进行4个季节调查获得的pH、溶解无机碳(DIC)、水温、盐度、溶解氧(DO)及叶绿素a(Chla)等数据,估算该区域表层海水溶解无机碳体系各分量的浓度、初级生产力(PP)、表层海水CO2分压p(CO2)]和海-气界面CO2交换通量(FCO2),分析牡蛎养殖活动对养殖区碳循环的影响。结果表明:牡蛎养殖区表层海水中Chla、DIC、HCO3PP显著低于非养殖区;养殖淡季表层海水中pH、DO、DIC、HCO3、和CO32–显著大于养殖旺季,养殖旺季的p(CO2)和FCO2显著大于养殖淡季。牡蛎养殖区表层海水夏季、秋季、冬季和春季的海-气界面CO2交换通量FCO2平均值分别是(42.04±9.56)、(276.14±52.55)、(–11.59±18.15)和(–13.02±6.71)mmol/(m2·d),冬季各站位FCO2值离散度较大,其中位数是–10.73mmol/(m2·d)。在全年尺度,表层海水p(CO2)及FCO2与水温呈显著正相关,与盐度呈显著负相关。在非养殖区,浮游植物光合作用可能对影响表层海水p(CO2)及FCO2起主导作用。养殖牡蛎钙化、呼吸作用等生理因素释放的CO2对表层海水p(CO2)及FCO2未产生显著影响。考洲洋养殖海域养殖旺季为CO2的源,养殖淡季整体为CO2的弱汇。

关 键 词:溶解无机碳  pCO2  CO2交换通量  牡蛎养殖  考洲洋
收稿时间:2021/10/31 0:00:00
修稿时间:2022/1/14 0:00:00

Temporal and spatial variation in the sea-air CO2 flux in the oyster aquaculture area of Kaozhou Bay
PENG Peng-fei,MA Yuan,SHI Rong-jun,WANG Di,XU Xin,YAN Bin.Temporal and spatial variation in the sea-air CO2 flux in the oyster aquaculture area of Kaozhou Bay[J].Marine Sciences,2022,46(10):140-149.
Authors:PENG Peng-fei  MA Yuan  SHI Rong-jun  WANG Di  XU Xin  YAN Bin
Institution:South China Sea Marine Survey and Technology Center, State Oceanic Administration, Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou 510300, China;South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
Abstract:Based on the investigation data of pH, dissolved inorganic carbon (DIC), seawater temperature, salinity, dissolved oxygen (DO), chlorophyll a (Chl a), and other data during four seasons from July and November 2018 and January and April 2019 in the oyster aquaculture area of Kaozhou Bay in Guangdong, the concentration of each component of dissolved inorganic carbon system, primary productivity (PP), p (CO2), and sea-air CO2 flux (FCO2) were estimated, and the influence of carbon cycle by the oyster aquaculture activities on the oyster aquaculture area was analyzed. The results showed that the Chl a, DIC, HCO3-, and PP of the surface seawater in the oyster aquaculture area were significantly lower than those in the non-culture area. The pH, DO, DIC, HCO3-, and CO32- of the surface seawater in the off-season were significantly higher than those in the peak season, and the p(CO2) and FCO2 in the peak season were significantly higher than those in the off-season. The average FCO2 of the surface seawater in the oyster culture area in summer, autumn, winter, and spring was (42.04±9.56), (276.14±52.55), (-11.59±18.15), and (-13.02±6.71) mmol/(m2·d), respectively. The dispersion of FCO2 in the oyster culture area was large in winter, with a median of -10.73 mmol/(m2·d). Throughout the year, the p (CO2) and FCO2 of the surface seawater were significantly positively correlated with the water temperature and negatively correlated with salinity. In the non-culture area, phytoplankton photosynthesis might play a leading role in affecting the p (CO2) and FCO2 of the surface seawater. The CO2 released by the physiological factors, including the calcification and respiration of cultured oysters, had no significant effect on the p(CO2) and FCO2 of the surface water. Kaozhou Bay was the source of CO2 in the peak season, with a weak sink of CO2 in the off-season.
Keywords:dissolved inorganic carbon  pCO2  CO2 flux  oyster aquaculture  Kaozhou Bay
点击此处可从《海洋科学》浏览原始摘要信息
点击此处可从《海洋科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号