首页 | 本学科首页   官方微博 | 高级检索  
     检索      

牡蛎体内及其养殖水体中细菌耐药性研究
引用本文:王瑞旋,李炳,林华剑,陈琦,陈秀程,牟红莉,王江勇.牡蛎体内及其养殖水体中细菌耐药性研究[J].海洋科学,2020,44(6):56-63.
作者姓名:王瑞旋  李炳  林华剑  陈琦  陈秀程  牟红莉  王江勇
作者单位:韩山师范学院,广东潮州 521041;中国水产科学研究院南海水产研究所,广东广州510300;广东省水生动物疫病预防控制中心,广东广州511400;华南师范大学,广东广州 510631;中国水产科学研究院南海水产研究所,广东广州510300;天津农学院,天津300384
基金项目:广东省自然科学基金项目(2017A030313112);现代农业产业技术体系建设专项资金(CARS-49);广东省乡村振兴战略专项(粤财农[2019]73号);国家自然科学基金项目(31902416)
摘    要:为进一步了解牡蛎体内外细菌的耐药性,对分离自阳江的香港牡蛎(Crassostrea hongkongensis)养殖水体及其内脏团的637个异养细菌进行了10种抗生素的药敏试验。采用纸片扩散法(Kirby-Bauer,简称K-B),参照NCCLS抗生素敏感试验操作标准,研究细菌的耐药概况。结果显示:健康牡蛎体内细菌对恩诺沙星和庆大霉素耐药率较低,发病牡蛎体内细菌对庆大霉素耐药率最低,次之为复合磺胺和恩诺沙星;水体细菌对氯霉素、恩诺沙星、环丙沙星耐药率较低,水体及体内细菌对呋喃唑酮耐药率最高,而对卡那霉素及青霉素耐药率则波动较大。结果还显示,不同来源的受试菌株多重耐药状况严重,来源于健康和病牡蛎的菌株在7月份的多重耐药率达到峰值,分别为66.7%和64.3%,养殖水体细菌多重耐药率峰值出现在4月份,最高达76.7%。总体来看,源于牡蛎养殖环境水体及其牡蛎体内的异养菌多重耐药比例较高,值得引起注意。而受试菌株对不同药物的抗性存在较大差异,且异养细菌对呋喃唑酮的耐药率明显高于对其它受测抗生素的耐药率。从时间动态上看,水体菌耐药率峰值出现于4月份,而牡蛎体内菌群耐药率峰值出现于7月份。

关 键 词:香港牡蛎(Crassostrea  hongkongensis)  异养菌  弧菌  抗生素  耐药性
收稿时间:2019/12/10 0:00:00
修稿时间:2020/2/29 0:00:00

Study on antibiotic resistance of bacteria in oysters and their farming water
WANG Rui-xuan,LI Bing,LIN Hua-jian,CHEN Qi,CHEN Xiu-cheng,MOU Hong-li,WANG Jiang-yong.Study on antibiotic resistance of bacteria in oysters and their farming water[J].Marine Sciences,2020,44(6):56-63.
Authors:WANG Rui-xuan  LI Bing  LIN Hua-jian  CHEN Qi  CHEN Xiu-cheng  MOU Hong-li  WANG Jiang-yong
Institution:Hanshan Normal University, Chaozhou 521041, China;South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Guangdong Provincal Aquatic Animal Epidemic Disease Prevention and Control Center, Guangzhou 511400, China;South China Normal University, Guangzhou 510631, China;South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Tianjin Agricultural University, Tianjin 300384, China
Abstract:To understand the resistance to antibiotics of bacteria in and out of oysters, 10 types of antibiotic susceptibility tests were performed on 637 heterotrophic bacteria isolated from oysters and their farming water in Yangjiang. The Kirby-Bauer paper diffusion method (K-B method) was used to analyze the general situation of bacterial resistance to different antibiotics according to the NCCLS antibiotic sensitivity test operating standards. The results showed that the antibiotic resistance rates of heterotrophic bacteria from healthy oysters to enoxacin and gentamicin were low. The antibiotic resistance rate for heterotrophic bacteria from diseased oysters to gentamicin was the lowest, followed by that to the compounds sulfonamide and enoxacin. The antibiotic resistance rates for bacteria from farming water to chloramphenicol, enoxacin, and ciprofloxacin were low; however, the antibiotic resistance rate of bacteria from oysters and farming water to furazolidone was the highest among 10 tested antibiotics, and the sensitivity rates to kanamycin and penicillin were fickle. The present results also suggested that the multi-antibiotic resistance rate was significant. The multi-antibiotic resistance rate of strains from healthy oysters and diseased oysters peaked at 66.7% and 64.3%, respectively, in July, and the multi-antibiotic resistance rate of the strains from the farming water peaked at 76.7% in April. In general, the results of this study indicated that the multi-antibiotic resistance rate of heterotrophic bacteria from the farming environmental water and oysters were all high, which should be a concern. The resistance of the tested strains to different antibiotics varied significantly, and the resistance rate to furazolidone was significantly higher than that of other tested antibiotics. In terms of time dynamics, the peak of antibiotics resistance rate of farming water-derived bacteria and oyster-derived bacteria occurred in April and July, respectively.
Keywords:Crassostrea hongkongensis  heterotrophic bacteria  Vibrio  antibiotics  resistance
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《海洋科学》浏览原始摘要信息
点击此处可从《海洋科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号