首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pb and other ore metals in modern seafloor tectonic environments: Evidence from melt inclusions
Authors:Yannick Beaudoin  Steven D Scott  Zoltan Zajacz
Institution:a Scotiabank Marine Geology Research Laboratory, Department of Geology, University of Toronto, 22 Russell St, Toronto, Ontario, Canada, M5S 3B1
b Isotope Geochemistry and Mineral Resources, Department of Earth Sciences, Swiss Federal Institute of Technology, ETH Zentrum NO, CH-8092 Zürich, Switzerland
Abstract:Many modern seafloor tectonic environments are host to hydrothermal systems and associated polymetallic sulfide deposits. Metal transport and precipitation are controlled by magmatic processes such as pre-eruptive degassing and the hydrothermal cycle. The original availability of Pb and other ore metals in a given setting is dependent on concentrations in the original magmatic source or additional enrichment processes. We have examined the Pb budget of melt inclusions from nine modern seafloor settings representing back-arcs, mid-ocean ridges and seamounts. Melt inclusions provide information on the characteristics of parental magmas, including insights into metal budgets. Trace element data in melt inclusions hosted in plagioclase, olivine and pyroxene were obtained by laser-ablation inductively-coupled mass-spectrometry.Results from back-arcs emphasize the impact of slab-subduction and dehydration processes on the chemical characteristics of generated magmas. Volatile- and fluid-mobile element-rich melt inclusions at Manus basin and Okinawa trough reflect a robust contribution of elements from the subducting slab as evidenced by relatively low Ce/Pb ratios. At Bransfield strait, on the other hand, melt inclusions are volatile poor, and fluid-mobile element ratios are similar to mid-ocean ridge values indicating little or no contribution from the slab. High Cu concentrations at Manus basin and Okinawa trough can be explained by fluxing of ferric iron from the subducting slab benefiting the production of sulfate over sulfide.Metal budgets for seamounts located on and nearby the axis of mid-ocean ridge segments appear to be independent of any input of mantle plume material. Results from the southern Explorer ridge (strong lower mantle influence, transitional- and enriched-MORBs), Pito and Axial seamounts (moderate lower mantle influence, transitional-MORBs) and a Foundation near-ridge seamount (little to no mantle influence, normal-MORB) show that, despite similar tectonic environments and varying contributions of mantle plume material, Cu, Zn and Pb values do not vary significantly between the enriched and non-enriched magma components of a given setting.
Keywords:Pb  melt inclusions  LA-ICP-MS  back-arcs  mid-ocean ridges  seamounts
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号