首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trade-wind waves and mud dynamics on the French Guiana coast,South America: Input from ERA-40 wave data and field investigations
Institution:1. Cluster of Excellence “The Future Ocean”, Institute of Geosciences at Kiel University, Otto-Hahn-Platz 1, 24118 Kiel, Germany;2. Senckenberg Institute, Department of Marine Research, Südstrand 40, 26382 Wilhemshaven, Germany
Abstract:The South American coast between Brazil and Venezuela is affected by longshore migrating mud banks derived from the fine-grained Amazon sediment discharge. Onshore mud migration prevails over shallow ‘bank’ areas alternating alongshore with deeper ‘inter-bank’ areas. The transport on the inner shelf, and attachment to the shoreline, of this migrating mud has been attributed mainly to wind waves. However, the lack of in situ data on waves hampers understanding of the relationship between waves and mud dynamics. A 44-yr record (1960–2004) of the ERA-40 wave dataset generated by the European Centre for Medium-Range Weather Forecasts (ECMWF) was used, in conjunction with field investigations in French Guiana, to define both event-scale and longer-term patterns of mud mobilisation induced by waves. The ratio H03 / T2, combining wave height H and period T, and the angle of wave incidence α, were singled out as the most relevant parameters for describing wave forcing. Typical ‘bank’ and ‘inter-bank’ profiles and corresponding mud densities, and a 3-month record of changes in the thickness of the fluid mud layer in an estuarine navigation channel were monitored by echo-sounding from October 2002 to January 2003. An 80-day record of bed-level changes in the intertidal zone was obtained from August to November 2004 using a pressure transducer. The results on the wave regime of French Guiana confirm a distinctly seasonal pattern, and highlight an increase in H03 / T2 over the 44-yr period related to an increase in trade-wind velocities determined from corresponding trends in Atlantic wind pseudo-stress off the South American coast. Wave forcing over bank areas leads to the liquefaction of a 1–3 m-thick layer of mud that is transported onshore (and alongshore by the longshore component of wave energy). The episodic nature of high wave energy events generally results in the formation of mud bar features from the shoreward mobilisation of gel-like fluid mud. The effect of waves on mud is particularly marked following long periods of low energy, and especially at the onset of the high wave energy season (October to May), when even moderate wave energy events can lead to significant mobilisation of mud.Significant phases of increased wave energy are attended by higher long-term (annual) rates of longshore mud bank migration but the correlation is rather poor between the wave forcing parameter H03 / T2 and migration rates because stronger wave forcing is generally associated with low angles of wave incidence. This suggests a complementary role of other hydrodynamic mechanisms, such as geostrophic and tidal currents, in longshore mud bank migration.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号