首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Morphodynamic behaviour of a mixed sand–gravel ebb-tidal delta: Deben estuary,Suffolk, UK
Institution:1. Zhejiang Institute of Hydraulics and Estuary, Hangzhou, China;2. Zhejiang Provincial Key Laboratory for Estuarine and Coastal Research, China;3. State Key Laboratory for Estuarine and Coastal Research, School of Marine Sciences, East China Normal University, Shanghai, China;4. Faculty of Civil Engineering and Geosciences, Delft University of Technology, the Netherlands;5. Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands;1. Ocean and Earth Sciences Department, National Oceanography Centre Southampton, SO14 3ZH, UK;2. Coastal Planning and Engineering Practice, CH2MHill, Swindon SN40QD, UK;3. Department of Environmental Sciences, Macquarie University, NSW 2109, Australia
Abstract:The morphodynamics of inlets and ebb-tidal deltas reflect the interaction between wave and tidal current-driven sediment transport and significantly influence the behaviour of adjacent shorelines. Studies of inlet morphodynamics have tended to focus on sand-dominated coastlines and reference to gravel-dominated or ‘gravel-rich’ inlets is rare. This work characterises and conceptualises the morphodynamics of a meso-tidal sand–gravel inlet at the mouth of the Deben estuary, southeast England. Behaviour of the inlet and ebb-tidal delta over the last 200 yr is analysed with respect to planform configuration and bathymetry. The estuary inlet is historically dynamic, with ebb-tidal shoals exhibiting broadly cyclic behaviour on a 10 to 30 yr timescale. Quantification of inlet parameters for the most recent cycle (1981–2003) indicate an average ebb delta volume of 1 × 106 m3 and inlet cross-sectional area of 775 m2. Bypassing volumes provide a direct indicator of annual longshore sediment transport rate over this most recent cycle of 30–40 × 103 m3 yr? 1. Short-term increases in total ebb-tidal delta volume are linked to annual variability in the north to northeasterly wind climate. The sediment bypassing mechanism operating in the Deben inlet is comparable to the ‘ebb delta breaching’ model of FitzGerald FitzGerald, D.M., 1988. Shoreline erosional–depositional processes associated with tidal inlets, in: Aubrey, D.G., Weishar, L. (Ed.), Hydrodynamics and Sediment Dynamics of Tidal Inlets. Springer-Verlag Inc., New York, pp. 186–225.], although the scales and rates of change exhibited are notably different to sand-dominated systems. A systematic review of empirical models of sand-dominated inlet and ebb-tidal delta morphodynamics (e.g. those of O'Brien, M.P., 1931. Estuary tidal prisms related to entrance areas. Civil Engineering, 1, 738–739.; Walton, T.L., and Adams, W.D., 1976. Capacity of inlet outer bars to store sand. Proceedings of 15th Coastal Engineering Conference, 1919–1937.; Gaudiano, D.J., Kana, T.W., 2001. Shoal bypassing in mixed energy inlets: geomorphic variables and empirical predictions for nine South Carolina inlets. J. Coast. Res., 17, (2), 280–291.]) shows the Deben system to be significantly smaller yet characterised by a longer bypassing cycle than would be expected for its tidal prism. This is attributed to its coarse-grained sedimentology and the lower efficiency of sediment transporting processes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号