首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of photochemical self-action of carbon-containing aerosol: Wildfires
Authors:I B Konovalov  E V Berezin  M Beekmann
Abstract:It has been shown by numerical simulation that the rate of formation of secondary organic aerosols (SOAs) in smoke plumes caused by vegetation and peat fires under real conditions can significantly depend on the aerosol optical thickness (AOT). The AOT determines the photodissociation rate and hydroxyl radical concentration, which in turn determines the rate of SOA generation as a result of oxidation of semivolatile organic compounds. Quantitative analysis has been carried out for the situation that took place in European Russia during the 2010 Russian wildfires. The state-of-the-art 3D chemical transport model is used in this study; the simulations are optimized and validated using the data of monitoring of the particulate matter in the Moscow region and Finland. The findings indicate that it is important to allow for this effect in studies focused on the analysis and prediction of air pollution due to wildfires, as well as climate and weather studies, whose results may depend on the assumptions about the content and properties of atmospheric carbon-containing aerosol.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号