首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Laboratory, numerical, and theoretical modeling of the flow in a far wake in a stratified fluid
Authors:O A Druzhinin  V V Papko  D A Sergeev  Yu I Troitskaya
Institution:(1) Institute of Applied Physics, Russian Academy of Sciences, ul. Ul’yanova 46, Nizhni Novgorod, 603950, Russia
Abstract:The far-wake flow past a sphere towed in a fluid with high Reynolds and Froude numbers and with a pycnocline-form salt-density stratification is studied in a laboratory experiment based on particle image velocimetry and in numerical and theoretical modeling. In the configuration under consideration, the axis of sphere towing is located under a pycnocline. Flow parameters, the profiles of density and average velocity, and the initial field of velocity fluctuation in numerical modeling are specified from the data of the laboratory experiment. The fields of fluid velocity at different times and the time dependences of integral parameters of wake flow, such as the average velocity at the axis and the transverse width of the flow, are obtained. The results of numerical modeling are in good qualitative and quantitative agreement with the data of the laboratory experiment. The results of the laboratory experiment and numerical modeling are compared to the predictions of a quasi-linear and quasi-two-dimensional theoretical model. The time evolution of both the average velocity at the axis and the transverse width of the wake is obtained with the model and is in good agreement with the experimental data. The results of numerical modeling also show that, under the effect of velocity fluctuation in the wake, internal waves whose spatial period is equal to the characteristic period of the wake’s vortex structure are excited efficiently in the pycnocline.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号