首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diagenesis of Ordovician carbonates from the north-east Michigan Basin, Manitoulin Island area, Ontario: evidence from petrography, stable isotopes and fluid inclusions
Authors:M CONIGLIO  A E WILLIAMS-JONES†
Institution:Department of Earth Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada;Department of Geological Sciences, McGill University, 3450 University Street, Montreal, Quebec H3A 2A7, Canada
Abstract:Middle to Late Ordovician subtidal carbonates in the Manitoulin Island area of Ontario are predominantly limestone in composition, but non-ferroan and ferroan dolomite is a common cement as well as a selective or locally pervasive replacement phase. Integration of field, petrographic, geochemical (δ13C, δ18O) and fluid inclusion data indicates that lithification of these carbonates occurred during burial diagenesis, with much of the alteration controlled by regional fracturing and hydrothermal influences. Aqueous (type 1) fluid inclusions in early calcite (pre-dolomite) and dolomite are saline (> 29 wt% NaCl eq.) solutions with Ca and/or Mg in excess of Na and display homogenization temperatures with modes of 95 and 101°C, respectively. These temperatures can be explained by significantly more burial than can be accounted for either by the available stratigraphic information or by an unusually high palaeogeothermal gradient, which also is not well supported. The fluid inclusion temperatures are interpreted to have resulted from hydrothermal fluids which circulated during the burial diagenesis of these strata. Type 1 inclusions in late (post-dolomite) calcite are less saline (<19 wt% NaCl eq.) and have a bimodal distribution of homogenization temperatures with a relatively well defined low temperature peak similar to those in early calcite and dolomite and a broad higher temperature grouping with a mode at 183°C. A small proportion of methane and light hydrocarbon-bearing fluid inclusions (type 2) are present in all stages of carbonate. Dolomitizing fluids were derived from burial compaction of argillaceous sediments in the more central parts of the Michigan Basin and the updip migration of these brines along fractures to the basin margin where the carbonates of the Manitoulin Island area were dolomitized. Alternatively, migration of dolomitizing brines downward from the overlying pervasively dolomitized Silurian sequence into fractures in the Ordovician carbonates may have occurred. Integration of the aqueous fluid inclusion data into the diagenetic history of these carbonates remains equivocal because most of the inclusions are secondary or indeterminate in origin. Nevertheless, high salinities resulting from interaction with evaporitic strata and hydrothermal effects are clearly implicated although the origin of the latter remains unclear. The alteration styles of the Ordovician carbonates in the Manitoulin area are similar to those of Ordovician hydrocarbon reservoirs described from other parts of the Michigan Basin. They indicate that fracture-related diagenesis occurred on a basin-wide scale and that hydrothermal effects were important.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号