首页 | 本学科首页   官方微博 | 高级检索  
     检索      

短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例
引用本文:张世涛,陈华勇,张小波,张维峰,许超,韩金生,陈觅.短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例[J].矿床地质,2017,36(6):1263-1288.
作者姓名:张世涛  陈华勇  张小波  张维峰  许超  韩金生  陈觅
作者单位:中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广东 广州 510640;中国科学院大学, 北京 100049,中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广东 广州 510640;广东省矿物物理与材料研究开发重点实验室, 广东 广州 510640,湖北省地质调查院, 湖北 武汉 430034,中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广东 广州 510640;武汉地质调查中心, 湖北 武汉 430205,中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广东 广州 510640;中国科学院大学, 北京 100049,中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广东 广州 510640,湖北省地质调查院, 湖北 武汉 430034
基金项目:国土资源部公益性行业科研专项项目(编号:201511035)和中国科学院创新交叉团队合作项目(编号:Y433131A07)联合资助
摘    要:铜绿山铜铁金矿床是长江中下游铜铁多金属成矿带最重要的矽卡岩型矿床之一,矿床的形成与铜绿山石英闪长岩株体密切相关,矿体主要沿北北东向断裂产于石英闪长岩与大理岩/白云质大理岩的接触带,形成钙-镁复合型矽卡岩铜多金属矿化。围岩蚀变由致矿岩体到接触-蚀变矿化中心为:绢云母-绿泥石-钾化带、高岭石-绿泥石-弱矽卡岩化带、皂石-绿泥石-强矽卡岩化带。蚀变矿化期次可分为岩浆-热液期和表生期,其中,岩浆-热液期可分为矽卡岩阶段、退化蚀变阶段、氧化物阶段、硫化物阶段和碳酸盐阶段。绿泥石是钻孔岩芯中出现最多且分布最为广泛的蚀变矿物之一。经短波红外光谱(SWIR)研究发现,从蚀变矿化中心到外围,绿泥石出现由铁绿泥石/铁镁绿泥石逐渐转变为镁绿泥石,且绿泥石Fe-OH特征吸收峰位值(Pos2250)显示出从高值变为低值的趋势。结合其他蚀变矿物的空间分布特征,文章提出绿泥石的高Fe-OH特征吸收峰位值(Pos22502253 nm)与金云母、蛇纹石、绿帘石、皂石和高岭石的大量出现,对指示铜绿山矽卡岩型矿床的矿化中心具有一定的作用。

关 键 词:地质学  围岩蚀变  成矿期次  短波红外光谱  绿泥石  铜绿山铜铁金矿床  鄂东南矿集区
收稿时间:2016/11/7 0:00:00
修稿时间:2017/8/11 0:00:00

Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area
ZHANG ShiTao,CHEN HuaYong,ZHANG XiaoBo,ZHANG WeiFeng,XU Chao,HAN JinSheng and CHEN Mi.Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area[J].Mineral Deposits,2017,36(6):1263-1288.
Authors:ZHANG ShiTao  CHEN HuaYong  ZHANG XiaoBo  ZHANG WeiFeng  XU Chao  HAN JinSheng and CHEN Mi
Institution:CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640. Guangdong, China;University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640. Guangdong, China;Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, Guangdong, China,Geological Survey of Hubei Province, Wuhan 430034, Hubei, China,CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640. Guangdong, China;Wuhan Institute of Geology and Mineral Resources, Wuhan 430205, Hubei, China,CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640. Guangdong, China;University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640. Guangdong, China and Geological Survey of Hubei Province, Wuhan 430034, Hubei, China
Abstract:The Tonglvshan Cu-Fe-Au deposit, associated with the Early Cretaceous Tonglvshan quartz diorite stock, is one of the most important skarn deposits in the Middle-Lower Yangtze River metallogenic belt. The Cu-polymetallic mineralization with Ca-Mg compound skarn alteration mainly occurs in the contact zone between quartz diorite and marble/dolomitic marble. From the quartz diorite pluton to the hydrothermal mineralization center, the Tonglvshan deposit generally exhibits sericite-chlorite-potassic alteration, kaolinite-chlorite-weak skarn alteration, and saponite-chlorite-strong skarn alteration. The hypogene alteration and mineralization at the Tonglvshan deposit can be divided into skarn alteration, retrograde alteration, oxide, sulfide and carbonate stages. Chlorite is one of the most widespread minerals in this deposit. Short Wavelength Infrared (SWIR) research on Tonglvshan reveals that the chlorite transformed from Fechlorite/Intchlorite to Mgchlorite, and the values of chlorite 2250 nm absorption peak (Pos2250) show strong decreasing trend from high to low values from the mineralization center to the distal barren area. Combined with the spatial features of other minerals, the SWIR anomalous (Pos2250>2253 nm) of chlorite and quantities of phlogopite, serpentine, epidote, saponite and kaolinite can be used to a certain extent to detect the mineralized skarn orebodies at the Tonglvshan skarn deposit.
Keywords:geology  wall rock alteration  mineralization sequence  Short Wavelength Infrared (SWIR)  chlorite  Tonglvshan Cu-Fe-Au deposit  Edongnan ore concentration area
本文献已被 CNKI 等数据库收录!
点击此处可从《矿床地质》浏览原始摘要信息
点击此处可从《矿床地质》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号