首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using isotopic,hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China
Authors:Ziyong Sun  Rui Ma  Yanxin Wang  Teng Ma  Yunde Liu
Institution:1.Laboratory of Basin Hydrology and Wetland Eco-restoration,China University of Geosciences,Wuhan,China;2.School of Environmental Studies,China University of Geosciences,Wuhan,China;3.State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences,Wuhan,China
Abstract:Isotopic and hydrogeochemical analysis, combined with temperature investigation, was conducted to characterize the flow system in the carbonate aquifer at Taiyuan, northern China. The previous division of karst subsystems in Taiyuan, i.e. the Xishan (XMK), Dongshan (DMK) and Beishan (BMK) mountain systems, were also examined. The measured δD, δ 18O and 3He/4He in water indicate that both thermal and cold groundwaters have a meteoric origin rather than deep crustal origin. Age dating using 3H and 14C shows that groundwater samples from discharge zones along faults located at the margin of mountains in the XMK and DMK are a mixture of paleometeoric thermal waters and younger cold waters from local flow systems. 14C data suggest that the average age was about 10,000 years and 4,000 years for thermal and cold groundwater in discharge zones, respectively. Based on the data of temperature, water solute chemical properties, 14C, δ 34SSO4, 87Sr/86Sr and δ 18O, different flow paths in the XMK and DMK were distinguished. Shallow groundwater passes through the upper Ordovician formations, producing younger waters at the discharge zone (low temperature and ionic concentration and enriched D and 18O). Deep groundwater flows through the lower Ordovician and Cambrian formations, producing older waters at the discharge zone (high ionic concentration and temperature and depleted D and 18O). At the margin of mountains, groundwater in deep systems flows vertically up along faults and mixes with groundwater from shallow flow systems. By contrast, only a single flow system through the entire Cambrian to Ordovician formations occurs in the BMK.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号