首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Melt Enrichment of Shallow Depleted Mantle: a Detailed Petrological, Trace Element and Isotopic Study of Mantle-Derived Xenoliths and Megacrysts from the Cameroon Line
Authors:LEE  DER-CHUEN; HALLIDAY  ALEX N; DAVIES  GARETH R; ESSENE  ERIC J; FITTON  J GODFREY; TEMDJIM  ROBERT
Institution:1DEPARTMENT OF GEOLOGICAL SCIENCES, UNIVERSITY OF MICHIGAN 2534 C. G. LITTLE BUILDING, ANN ARBOR, MI 48109–1063, USA
2FACULTEIT DER AARDWETENSCHAPPEN, VRIJE UNIVERSITEIT 1081 HV AMSTERDAM, NETHERLANDS
3DEPARTMENT OF GEOLOGY AND GEOPHYSICS, UNIVERSITY OF EDINBURGH EDINBURGH EH93JW, UK
4DEPARTMENT OF EARTH SCIENCES, UNIVERSITY OF YAOUNDE YAOUNDE, CAMEROON
Abstract:Major element, trace element and Sr–Nd–Pb isotopiccompositions of ultramafic xenoliths and megacrysts from thecontinental Cameroon line provide evidence for metasomatismof the upper most lithospheric mantle by enriched melts duringthe Mesozoic The megacrysts probably crystallized within thelower continental crust from melts similar to the host magmas.All the xenoliths originated as depleted residues after theextraction of basaltic melts, but some indicate evidence ofinteraction with enriched partial melts before entrainment.The U–Pb isotopic data on garnet are consistent with coolingthrough >900C at >300 Ma. The Sm–Nd isotope systematicsin constituent phases appear to have been in equilibrium ona xenolith scale at the time of entrainment, indicating derivationfrom mantle that remained at temperatures >600C until eruption.Spinel therzolies that show simple light rare earth element(LREE) depletions are characterized by isotopic compositionsthat are comparable with, but slightly more depleted than AtlanticN-MORB, suggesting that the unmetasomatized sub-continentallithosphere of the Cameroon line may be isotopically similarto that of sub-oceanic lithosphere. The Nd-depleted mantle modelages of these xenoliths are consistent with late Proterozoicdepletion, similar in age to much of the overlying continentalcrust. In contrast, samples that have LREE-enriched clinopyr-oxenes(La/Yb =4.7–9.4) contain trace amounts of amphibole, areenriched in U and have more radiogenic Pb and Sr. These xenolithsyield U–Pb and Sm–Nd model ages consistent withMesozoic enrichment, in agreement with the age of enrichmentof the source regions of the basalts, as deduced from Pb isotopiccompositions. Clinopyroxenes record three orders of magnitudeenrichment in U and LREE accompanied by progressive K depletionassociated with the growth of trace amphibole, with K/U ratiosthat range from 12000 to 1. The ratios of the trace elementsthought to have similar bulk D in mantle melting, Ce/Pb, Ba/Rband Nd/Sr ratios, display regional variations related to thetime integrated history of enrichments indicated by Nd isotopiccompositions. Mass balance calculations suggest that the meltsresponsible for the most recent enrichment of the lithospherehad higher La/Yb and U/Pb than Cameroon line host magmas, andwere probably the product of small degrees of partial meltingassociated with the earliest stages of the breakup of Pangea. KEY WORDS: Cameroon line; mantle xenoliths; megacrysts; REE; isotopic composition; trace element
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号