首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compositional Zoning of the Bishop Tuff
Authors:Hildreth  Wes; Wilson  Colin J N
Institution:1US Geological Survey, MS-910, Menlo park, CA 94025, USA
2School of Geography, Geology and Environmental Science, University of Auckland, PB 92019 Auckland Mail centre, Auckland 1142, New Zealand
Abstract:Compositional data for >400 pumice clasts, organized accordingto eruptive sequence, crystal content, and texture, providenew perspectives on eruption and pre-eruptive evolution of the>600 km3 of zoned rhyolitic magma ejected as the Bishop Tuffduring formation of Long Valley caldera. Proportions and compositionsof different pumice types are given for each ignimbrite packageand for the intercalated plinian pumice-fall layers that eruptedsynchronously. Although withdrawal of the zoned magma was lesssystematic than previously realized, the overall sequence displaystrends toward greater proportions of less evolved pumice, morecrystals (0·5–24 wt %), and higher FeTi-oxide temperatures(714–818°C). No significant hiatus took place duringthe 6 day eruption of the Bishop Tuff, nearly all of which issuedfrom an integrated, zoned, unitary reservoir. Shortly beforeeruption, however, the zoned melt-dominant portion of the chamberwas invaded by batches of disparate lower-silica rhyolite magma,poorer in crystals than most of the resident magma but slightlyhotter and richer in Ba, Sr, and Ti. Interaction with residentmagma at the deepest levels tapped promoted growth of Ti-richrims on quartz, Ba-rich rims on sanidine, and entrapment ofnear-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber,led to the dark gray and swirly crystal-poor pumices sparselypresent in all ash-flow packages. As shown by FeTi-oxide geothermometry,the zoned rhyolitic chamber was hottest where crystal-richest,rendering any model of solidification fronts at the walls orroof unlikely. The main compositional gradient (75–195ppm Rb; 0·8–2·2 ppm Ta; 71–154 ppmZr; 0·40–1·73% FeO*) existed in the melt,prior to crystallization of the phenocryst suite observed, whichincluded zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned,generally reflect magma temperature and the bulk compositionalgradient, implying both that few crystals settled or were transportedfar and that the observed crystals contributed little to establishingthat gradient. Upward increases in aqueous gas and dissolvedwater, combined with the adiabatic gradient (for the ~ 5 km depthrange tapped) and the roofward decline in liquidus temperatureof the zoned melt, prevented significant crystallization againstthe roof, consistent with dominance of crystal-poor magma earlyin the eruption and lack of any roof-rind fragments among theBishop ejecta, before or after onset of caldera collapse. Amodel of secular incremental zoning is advanced wherein numerousbatches of crystal-poor melt were released from a mush zone(many kilometers thick) that floored the accumulating rhyoliticmelt-rich body. Each batch rose to its own appropriate levelin the melt-buoyancy gradient, which was self-sustaining againstwholesale convective re-homogenization, while the thick mushzone below buffered it against disruption by the deeper (non-rhyolitic)recharge that augmented the mush zone and thermally sustainedthe whole magma chamber. Crystal–melt fractionation wasthe dominant zoning process, but it took place not principallyin the shallow melt-rich body but mostly in the pluton-scalemush zone before and during batchwise melt extraction. KEY WORDS: Bishop Tuff; ignimbrite; magma zonation; mush model; rhyolite
Keywords:: Bishop Tuff  ignimbrite  magma zonation  mush model  rhyolite
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号