首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Tugtutoq Younger Giant Dyke Complex, South Greenland: Fractional Crystallization of Transitional Olivine Basalt Magma
Authors:UPTON  B G J; THOMAS  J E
Institution:1Department of Geology, University of Edinburgh Edinburgh EH9 3JW, U.K.
2Department of Geology, University of Reading Reading RG6 2AB
Abstract:The Younger Giant Dyke Complex consists of a set of massivecoalescing dykes of Proterozoic age (c. 1170 Ma), resultingfrom intrusion of a suite of transitional olivine basaltic/hawaiiticmagmas in a continental rift setting. The suite, compositionallyrelated by low pressure (< 10 kb) olivine-plagioclase fractionation,is believed to have had a deeper level evolution dominated bypyroxene and possibly garnet fractionation. Slow cooling insitu of the interior parts of the dyke complex produced cumuliticsuites. Those exposed range from gabbroic to syenitic; residualbodies of riebeckite granite and, very subordinate, feldspathoidalsyenite were also generated. The basic magmas had notably lowfO2 values, leading to delayed magnetite and clinopyroxene precipitation,relatively iron-rich differentiates and some residual liquidsof pantelleritic composition. The basic magmas had high F/Clvalues and are inferred to have had low H2O contents. They werealso characterized by relatively high K/Rb and low 87Sr/86Srvalues; these characteristics imply a mantle source with highF/Cl but depleted in Rb relative to K and Sr. Basaltic magmasresponsible for (a) the preceding Older Giant Dyke Complex and(b) a suite of anorthositic xenoliths within the Younger GiantDyke Complex, are inferred to have been derived from separateprimary magma batches independent of those that yielded theYounger Giant Dyke Complex. The giant dykes are the highest-levelrepresentatives of a larger basic complex responsible for theextensive linear gravity ‘high’ in the Tugtutôq-Narssaqarea.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号