首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Origin of Minette by Mixing of Lamproite and Dacite Magmas in Veliki Majdan, Serbia
Authors:PRELEVIC  D; FOLEY  S F; CVETKOVIC  V; ROMER  R L
Institution:1 INSTITUTE OF GEOLOGICAL SCIENCES, UNIVERSITY OF GREIFSWALD, JAHNSTRASSE 17A, D-17489 GREIFSWALD, GERMANY
2 FACULTY OF MINING AND GEOLOGY, UNIVERSITY OF BELGRADE, ðUSINA 7, 11000 BELGRADE, YUGOSLAVIA
3 GEOFORSCHUNGSZENTRUM POTSDAM, TELEGRAFENBERG, D-14473 POTSDAM, GERMANY
Abstract:Composite dykes consisting of leucominette and dacite as wellas discrete dykes and flows of minette and lamproite composition,occur in the Veliki Majdan area, western Serbia. This area ispart of the Serbian Tertiary magmatic province, which consistsof numerous small occurrences of ultrapotassic igneous rocks.The composite dykes have leucominette margins (up to 150 cmthick) enclosing a central part of dacite up to 100 m in width.Between these two lithologies, a decimetre-sized transitionzone may occur. Petrography, mineral chemistry and bulk-rockgeochemistry, including Sr, Nd and Pb isotopes, provide evidencethat the minettes and leucominettes formed by hybridizationbetween a felsic magma similar in composition to dacite anda mantle-derived lamproitic magma. The leucominettes and minettescontain all phenocryst types (biotite, plagioclase, quartz)present in the dacites, but in partly resorbed and reacted form.The mica displays a great diversity of resorption textures asa result of partial dissolution, incipient melting and phlogopitization,suggesting superheating of the felsic melt during hybridization;the mineral modes and mineral compositions of the leucominettesand minettes resemble those in the lamproites. A model for themodification of lamproite melt towards minette is presentedin which minette is formed by mixing of lamproite and <30%felsic magma. The lack of any significant correlation betweenPb isotopic ratios and some of the ‘mixing-indices’(SiO2, Zr, Zr/Nb, 143Nd/144Ndi) recognized in the hybridizationmodel for the Veliki Majdan dykes may be a result of similarityof the Pb-isotopic signature in the two end-members. Highlyphlogopitized biotite xenocrysts in the minettes are ascribedto the retention of volatile components after magma mixing andcrystallization of a new generation of phlogopite from the hybridizedmagma. The magma-mixing model explains the reverse zoning andresorption features of phlogopite macrocrysts commonly recognizedin calcalkaline lamprophyres elsewhere. Therefore, this mixingmechanism may be globally applicable for the origin of minettesassociated with calcalkaline granitic plutonism in post-orogenicsettings. KEY WORDS: Serbia; lamproites; micas; phlogopitization; calcalkaline lamprophyres; superheating; magma mixing
Keywords:: Serbia  lamproites  micas  phlogopitization  calcalkaline lamprophyres  superheating  magma mixing
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号