首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mantle heat flow and geotherms for the main geologic domains in Morocco
Authors:A Rimi
Institution:(1) Département de Physique du Globe, Institut Scientifique, Avenue Ibn Battouta, B.P. 703, 10106 Rabat–Agdal, Morocco e-mail: rimi@israbat.ac.ma Tel.: +212-7-774548, Fax: +212-7-774540, MA
Abstract: Thermal and deep seismic soundings data are used to study the dependence between the compressional Pn velocity and the surface heat flow or the temperature at the Moho discontinuity in Morocco. This correlation indicates a significant decrease in Pn velocity where high heat flow and Moho temperature are observed. This result is consistent with respect to other regions of the world. Crustal heat generation models and geotherms are constructed for the major Moroccan geological domains extending from the Precambrian units in the south to the Alpine units in the north. The crustal contribution in surface heat flow is on average 35 mWm–2, with high values of 41–42 mWm–2 in the western and eastern Meseta where Hercynian granite intrusions could enrich the crust in radioactive heat sources. High mantle heat flow values are obtained beneath the Alboran neogene basin (62 mWm–2), the Rif (47 mWm–2), the Middle Atlas (41 mWm–2), and the south Atlantic margin (40 mWm–2) where the crust is thinned by an extensional tectonic regime. Despite their similar formation context, the intra-continental belts of the Middle and the High Atlas show different geothermal field components. A lithospheric heating process in the Middle Atlas could be the result of a Plio-Quaternary basaltic volcanism. Finally, the Precambrian basement of the Anti-Atlas like all the West African shield is a stable domain showing the lowest subsurface temperatures. Received: 14 January 1998 / Accepted: 29 June 1999
Keywords:  Heat flow  Pn velocity  Radioactivity  Geotherm  Morocco
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号