首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of exhumation and erosion in western West Gondwanaland as recorded by detrital zircons of late Neoproterozoic and Cambrian sedimentary rocks of NW and Central Argentina
Authors:Hubert Miller  Christopher Adams  Florencio G Aceñolaza  Alejandro J Toselli
Institution:1. Ludwig-Maximilians-Universit?t, München, Germany
2. GNS Science, Dunedin, New Zealand
3. Universidad Nacional de Tucumán, Tucumán, Argentina
Abstract:The evolution of the provenance areas for Late Neoproterozoic, Cambrian and Early Ordovician sedimentary and meta-sedimentary rocks of north central and northwest Argentina is discussed using 123 maximum ages of detrital zircons from 42 samples from this and previously published studies. Most detrital zircon ages fall into two groups: 1,200–900 Ma and 670–545 Ma. These ages are essentially identical for the non- to very low grade metamorphic late Neoproterozoic to Early Cambrian Puncoviscana Formation and the low to high grade metamorphic rocks of Eastern Sierras Pampeanas. Hence, both units are related to similar provenance areas at the same time of sedimentation. The time span from zircon crystallization in the Earth’s crust to exhumation and erosion may be very long. This is important when determining maximum ages of sedimentary rocks. Variation of zircon maxima may also be influenced by concurrent sedimentary cover of proposed provenance areas. For the late Mesoproterozoic to early Neoproterozoic zircon age group, an active mountain range of the southwest Brazilian Sunsás orogen is the most probable provenance area. The younger, late Neoproterozoic zircons are related to the continuously developing mountains of the Brasiliano orogen of southwest and south central Brazil. Young zircons, up to 514 Ma, from fossil-bearing Puncoviscana and Suncho Formation outcrops are related to late Early Cambrian volcanism contemporaneous with sedimentation. This situation continues through the Late Cambrian to the Early Ordovician, but the Sunsás orogen provenance diminishes as possible Río de la Plata craton origins become important.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号