首页 | 本学科首页   官方微博 | 高级检索  
     检索      


From orthogneiss to migmatite: Geochemical assessment of the melt infiltration model in the Gföhl Unit (Moldanubian Zone, Bohemian Massif)
Authors:P Hasalov  V Janou&#x;ek  K Schulmann  P &#x;típsk  V Erban
Institution:

aInstitute of Petrology and Structural Geology, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic

bUniversité Louis Pasteur, CGS/EOST, UMR 7517, 1 rue Blessig, Strasbourg 67084, France

cCzech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic

Abstract:The Gföhl Unit is the largest migmatite terrain of the Variscan orogenic root domain in Europe. Its genesis has been until now attributed to variable degrees of in situ partial melting. In the Rokytná Complex (Gföhl Unit, Czech Republic) there is a well-preserved sequence documenting the entire migmatitization process on both outcrop and regional scales. The sequence starts with (i) banded orthogneiss with distinctly separated monomineralic layers, continuing through (ii) migmatitic mylonitic gneiss, (iii) schlieren migmatite characterised by disappearance of monomineralic layering and finally to (iv) felsic nebulitic migmatite with no relics of the original banding.

While each type of migmatite shows a distinct whole-rock geochemical and Sr–Nd isotopic fingerprint, the whole sequence evolves along regular, more or less smooth trends for most of the elements. Possible mechanisms which could account for such a variation are that the individual migmatite types (i) are genetically unrelated, (ii) originated by equilibrium melting of a single protolith, (iii) formed by disequilibrium melting (with or without a small-scale melt movement) or (iv) were generated by melt infiltration from external source. The first scenario is not in agreement with the field observations and chemistry of the orthogneisses/migmatites. Neither of the remaining hypotheses can be ruled out convincingly solely on whole-rock geochemical grounds. However in light of previously obtained structural, petrologic and microstructural data, this sequence can be interpreted as a result of a process in which the banded orthogneiss was pervasively, along grain boundaries, penetrated by felsic melt derived from an external source.

In terms of this melt infiltration model the individual migmatites can be explained by different degrees of equilibration between the bulk rock and the passing melt. The melt infiltration can be modelled as an open-system process, characterised by changes of the total mass/volume and accompanied by gains/losses in many of the major- and trace elements. The modelling of the mass balance resulted in identification of a component added by a heterogeneous nucleation of feldspars, quartz and apatite from the passing melt. This is in line with the observed presence of new albitic plagioclase, K-feldspar and quartz coatings as well as resorption of relict feldspars. At the most advanced stages (schlieren and nebulitic migmatites) the whole-rock trace-element geochemical variations document an increasing role for fractional crystallization of the K-feldspar and minor plagioclase, with accessory amounts of monazite, zircon and apatite.

The penetrating melt was probably (leuco-) granitic, poor in mafic components, Rb rich, with low Sr, Ba, LREE, Zr, U and Th contents. It probably originated by partial melting of micaceous quartzo-feldspathic rocks.

If true and the studied migmatites indeed originated by a progressive melt infiltration into a single protolith resembling the banded orthogneiss, this until now underappreciated process would have profound implications regarding rheology and chemical development of anatectic regions in collisional orogens.

Keywords:Melt infiltration  Porous flow  Migmatites  Whole-rock geochemistry  Mass balance  Bohemian Massif (Gföhl Unit)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号