首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Post-collisional strongly peraluminous granites
Authors:Paul J Sylvester
Institution:

Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia

Abstract:Strongly peraluminous (SP) granites have formed as a result of post-collisional processes in various orogens. In ‘high-pressure' collisions such as the European Alps and Himalayas, post-collisional exhumation of overthickened crust (>50 km), heated by radiogenic decay of K, U and Th during syn-collisional thickening, produced small- to moderate-volume, cool (<875°C) SP granite melts with high Al2O3/TiO2 ratios. In ‘high-temperature' collisions such as the Hercynides and Lachlan Fold Belt (LFB), there was less syn-collisional crustal thickening (≤50 km). Crustal anatexis was related to post-collisional lithospheric delamination and upwelling of hot asthenosphere, forming large-volume, hot (≥875°C) SP granite melts with low Al2O3/TiO2 ratios. Both clay-rich, plagioclase-poor (<5%) pelitic rocks and clay-poor, plagioclase-rich (>25%) psammitic rocks have been partially melted in high-pressure and high-temperature collisional orogens, with the pelite-derived SP granites tending to have lower CaO/Na2O ratios (<0.3) than their psammite-derived counterparts. The predominance of pelite-derived SP granites in the Himalayas and psammite-derived SP granites in the LFB suggests that mature continental platforms made up more of the accreted crust in the Himalayan collision than in the LFB.
Keywords:Granites  Plate collision  Suture zones  Orogeny  Anatexis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号