首页 | 本学科首页   官方微博 | 高级检索  
     检索      

中国海相盆地原型-改造分析与油气有序聚集模式
引用本文:何治亮,陆建林,林娟华,金晓辉,漆立新,徐旭辉,黄仁春,王毅.中国海相盆地原型-改造分析与油气有序聚集模式[J].地学前缘,2022,29(6):60-72.
作者姓名:何治亮  陆建林  林娟华  金晓辉  漆立新  徐旭辉  黄仁春  王毅
作者单位:1.中国石油化工集团公司, 北京 1007282.中国石化石油勘探开发研究院, 北京 1022063.中国石化西北油气分公司, 新疆 乌鲁木齐 8300114.中国石化物探技术研究院, 江苏 南京 2111035.中国石化勘探分公司, 四川 成都 610041
基金项目:国家自然科学基金企业重点联合基金项目(U20B6001);国家科技重大专项(2017ZX05005)
摘    要:中国三大海相盆地原型及对油气形成原始物质条件的控制,古生代多次构造运动和中新生代差异性迭加改造对海相碳酸盐岩层系油气成藏、富集的控制作用,以及复杂构造区及超深层海相油气动态成藏过程与富集规律,是制约海相油气勘探发现的关键科学问题。研究认为,在不同板块构造旋回背景下,中国三大克拉通不同时期盆地原型及其沉积模式存在明显差别,可分为台内坳陷、被动大陆边缘和裂谷(陷)三大组合类型,其中被动大陆边缘可以分为陡坡、缓坡两种类型,形成了海相地层内多种类型的源-储配置关系;显生宙以来几次全球板块构造重组,特别是晚三叠世以来在多板块俯冲会聚构造格局下,三大海相克拉通盆地分别经历了4次迭加改造并形成了相应的陆相盆地原型,形成了多种类型的迭加改造地质结构,包括:山前带冲断-褶皱、差异沉降-隆升、多重滑脱构造、深断裂的走滑活动、构造-岩浆作用形成的相关构造;塔里木台盆区“大埋深、高压力、低地温”条件下的生烃抑制控制了油气分布,液态烃分布深度可以超过10 000 m,加里东中晚期和海西期古构造高部位控制了早期油气的运聚,燕山晚期—喜马拉雅期活动的走滑断裂带控制了晚期高熟油气的富集;四川盆地古隆起、古斜坡控制了原始油气聚集,形成了特殊的古油藏烃源灶,后期深埋裂解产生的油型裂解气成了大中型气田的主要气源,晚白垩世之后大规模褶皱变形和抬升剥蚀造成了盆地内流体压力系统重组再造,按照改造程度将油气聚集保存模式划分为:(1)弱改造型,常规、非常规气可在原位长期保存;(2)中改造型,常规气调整再成藏,页岩气规模富集;(3)强改造型,常规气藏大多遭破坏,部分非常规气藏得以保存。鄂尔多斯盆地奥陶系天然气具有“两源三向”的特征,天然气成藏与不整合面-地层层序界面、岩性-岩相变化密切相关,气藏普遍经历了一次调整过程。

关 键 词:盆地原型  迭加改造  油气系统  有序聚集模式  塔里木盆地  四川盆地  鄂尔多斯盆地  
收稿时间:2022-07-07

Marine basins in China—a prototype-reconstruction analyses and ordered hydrocarbon accumulation patterns
HE Zhiliang,LU Jianlin,Lin Juanhua,JIN Xiaohui,QI Lixin,XU Xuhui,HUANG Renchun,WANG Yi.Marine basins in China—a prototype-reconstruction analyses and ordered hydrocarbon accumulation patterns[J].Earth Science Frontiers,2022,29(6):60-72.
Authors:HE Zhiliang  LU Jianlin  Lin Juanhua  JIN Xiaohui  QI Lixin  XU Xuhui  HUANG Renchun  WANG Yi
Institution:1. China Petrochemical Corporation, Beijing 100728, China2. Sinopec Petroleum Exploration and Production Research Institute, Beijing 102206, China3. Northwest Oil Company, SINOPEC, Urumqi 830011, China4. Sinopec Geophysical Research Institution, Nanjing 211103, China5. Exploration Company, SINOPEC, Chengdu 610041, China
Abstract:There are three key scientific issues in the marine petroleum exploration in China, i.e., the prototypes of China's three major marine basins and their controls on the petroleum source material conditions; the control of Paleozoic multistage tectonic movements and Mesozoic/Cenozoic differential-superposition transformation on the hydrocarbon accumulation/enrichment in the marine carbonate strata; and the dynamic reservoir-forming processes and enrichment rules of marine petroleum in the complex structural areas and ultra-deep layers. Based on our prototype-reconstruction analyses, the basin prototypes and sedimentary models of the three cratons of China (South China, North China, Tarim) obviously differ between different periods under the effects of plate tectonic cycles, and can be divided into three combination types: intra platform depression, passive continental margin and rift (depression). The passive continental margin can be further divided into steep slope and gentle slope, with various source-reservoir allocation relationships formed in the marine strata. Several rounds of global plate tectonic reorganization take place since the Phanerozoic; and since the Late Triassic, especially, under the multiplate subduction-convergence tectonic framework, the three marine cratonic basins—Tarim, Sichuan, Ordos—undergo four superposition transformations and form the corresponding continental basin prototypes, with various types of complex geostructures developed including piedmont belt thrust-fold, differential subsidence-uplift, multi-detachment structures, deep strike-slip faults, as well as structures formed by tectonic magmatism. In the Tarim Basin, the inhibition of hydrocarbon generation due to great burial depth, high pressure and low ground temperature control the petroleum distribution, where the distribution depth of liquid hydrocarbon can exceed 10 000 m. The upper Middle and Late-Caledonian/Hercynian paleo structure controlls the early hydrocarbon migration and accumulation, while the active strike-slip fault zones of the Late Yanshanian to Himalayan control hydrocarbon enrichment in the later stage. In the Sichuan Basin, the ancient uplift/slope controll the initial hydrocarbon accumulation and form the ancient oil reservoir under an unique hydrocarbon source environment; cracked gas becomes the main gas source in the large and medium-sized gas fields. After the Late Cretaceous, large-scale fold, uplift and denudation result in the reorganization and reconstruction of the basin's fluid system. According to the degree of transformation, the models of petroleum accumulation/preservation are divided into (1) weak modification, where conventional/unconventional gas can be preserved in situ for a long time; (2) medium transformation, where conventional gas adjusts and re-accumulates while large-scale shale gas enrichment occurs; and (3) strong transformation, where conventional gas reservoirs are destroyed by intense modification while some unconventional gas reservoirs are preserved. In the Ordos Basin, Ordovician natural gas has two sources from three directions, where natural gas accumulation is closely related to unconformity and stratigraphic sequence boundary as well as lithological and lithofacies changes, while gas reservoirs generally experienced one adjustment process.
Keywords:basin prototype  superimposed transformations  petroleum system  orderly accumulation  Tarim Basin  Sichuan Basin  Ordos Basin  
点击此处可从《地学前缘》浏览原始摘要信息
点击此处可从《地学前缘》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号