首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transformation of ammonium nitrogen and response characteristics of nitrifying functional genes in tannery sludge contaminated soil
Authors:Kong Xiang-ke  Zhang Zi-xuan  Wang Ping  Wang Yan-yan  Zhang Zhao-ji  Han Zhan-tao  Ma Li-sha
Institution:1.Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China2.Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, China3.School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China4.Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
Abstract:High concentrations of ammonium nitrogen released from tannery sludge during storage in open air may cause nitrogen pollution to soil and groundwater. To study the transformation mechanism of NH4+-N by nitrifying functional bacteria in tannery sludge contaminated soils, a series of contaminated soil culture experiments were conducted in this study. The contents of ammonium nitrogen (as NH4+-N), nitrite nitrogen (as NO2?-N) and nitrate nitrogen (as NO3?-N) were analyzed during the culture period under different conditions of pollution load, soil particle and redox environment. Sigmodial equation was used to interpret the change of NO3?-N with time in contaminated soils. The abundance variations of nitrifying functional genes (amoA and nxrA) were also detected using the real-time quantitative fluorescence PCR method. The results show that the nitrification of NH4+-N was aggravated in the contaminated silt soil and fine sand under the condition of lower pollution load, finer particle size and more oxidizing environment. The sigmodial equation well fitted the dynamic accumulation curve of the NO3?-N content in the tannery sludge contaminated soils. The Cr(III) content increased with increasing pollution load, which inhibited the reproduction and activity of nitrifying bacteria in the soils, especially in coarse-grained soil. The accumulation of NO2?-N contents became more obvious with the increase of pollution load in the fine sand, and only 41.5% of the NH4+-N was transformed to NO3?-N. The redox environment was the main factor affecting nitrification process in the soil. Compared to the aerobic soil environment, the transformation of NH4+-N was significantly inhibited under anaerobic incubation condition, and the NO3?-N contents decreased by 37.2%, 61.9% and 91.9% under low, medium and high pollution loads, respectively. Nitrification was stronger in the silt soil since its copy number of amoA and nxrA genes was two times larger than that of fine sand. Moreover, the copy numbers of amoA and nxrA genes in the silt soil under the aerobic environment were 2.7 times and 2.2 times larger than those in the anaerobic environment. The abundance changes of the amoA and nxrA functional genes have a positive correlation with the nitrification intensity in the tannery sludge-contaminated soil.
Keywords:Tannery sludge  Transformation of ammonium nitrogen  Cr(III) aging  Fluorescence quantitative PCR  Functional gene
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号