首页 | 本学科首页   官方微博 | 高级检索  
     检索      

低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志
引用本文:刘家军,王大钊,翟德高,夏清,郑波,高燊,钟日晨,赵胜金.低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志[J].岩石学报,2021,37(9):2629-2656.
作者姓名:刘家军  王大钊  翟德高  夏清  郑波  高燊  钟日晨  赵胜金
作者单位:中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083;中国地质大学(北京)地球科学与资源学院, 北京 100083;东华理工大学核资源与环境国家重点实验室, 南昌 330013;西南石油大学地球科学与技术学院, 成都 610550;北京科技大学土木与资源工程学院, 北京 100083;内蒙古自治区第十地质矿产勘查开发院(有限责任公司), 赤峰 024005
基金项目:本文受国家自然科学基金重大研究计划重点项目(92062219)、国家自然科学基金重点项目(41730426)和国家自然科学青年基金项目(42003032)与面上基金项目(41973038、41573036)联合资助.
摘    要:低熔点亲铜元素(LMCE) As、Sb、Bi、Hg、Pb、Se、Te、Tl、Sn等,均具有亲铜性、低熔点、半金属的特性,在成矿过程中可以形成LMCE熔体,并对Au、Ag、PGE等贵金属的高效富集沉淀起到一种重要的桥梁作用。作者对前人研究资料与LMCE热力学相图进行了分析,并结合浅成低温热液型、造山型、卡林-类卡林型、碱性-偏碱性侵入岩型金矿床的研究成果,探讨了LMCE熔体形成、类型及其对Au、Ag、PGE等贵金属富集成矿的机理,并提出了LMCE熔体参与成矿的矿物组合与结构特征标志。LMCE熔体可以在岩浆过程、(岩浆)热液过程及变质过程中形成,是贵金属矿床重要的成矿机制之一。LMCE熔体中存在大量原子团簇,团簇间的聚集生长会使熔体难以达到相平衡,形成许多非平衡矿物组合,如包含LMCE的自然元素、金属互化物及含LMCE的多相矿物。Au在LMCE熔体中也可以团簇存在,金团簇聚集形成球状或片状,并形成巨富的金矿体。LMCE熔体形成的矿物常以浑圆状、近浑圆状、不规则状的单个或群体组合的乳滴、珠滴、气泡的微粒包体产在硫化物、硒化物、碲化物、氧化物和硅酸盐矿物内或沿矿物裂隙线形排列,这些LMCE微粒包体是熔体扰动导致熔-熔或熔-液间发生乳化所致,流体沸腾是引起熔体扰动的主要机制。LMCE熔体不能快速淬火结晶,通常在低温下缓慢冷却达到相平衡,形成复杂的矿物组合,该特点即使在微米到纳米级的矿物微粒中也显著存在。熔体-流体包裹体是LMCE熔体参与成矿作用最为直接的证据。固溶体分解结构、熔体退火结构、矿物-熔体二面角结构、溶解-再沉淀结构等也是LMCE熔体参与成矿的标志性结构。

关 键 词:低熔点亲铜元素  熔体  贵金属成矿  超常富集机理  矿物组合  特征标志
收稿时间:2021/6/27 0:00:00
修稿时间:2021/8/27 0:00:00

Super-enrichment mechanisms of precious metals by low-melting point copper-philic element (LMCE) melts
LIU JiaJun,WANG DaZhao,ZHAI DeGao,XIA Qing,ZHENG Bo,GAO Shen,ZHONG RiChen,ZHAO ShengJin.Super-enrichment mechanisms of precious metals by low-melting point copper-philic element (LMCE) melts[J].Acta Petrologica Sinica,2021,37(9):2629-2656.
Authors:LIU JiaJun  WANG DaZhao  ZHAI DeGao  XIA Qing  ZHENG Bo  GAO Shen  ZHONG RiChen  ZHAO ShengJin
Institution:State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;School of Earth Sciences, China University of Geosciences(Beijing), Beijing 100083, China;State Key Laboratory of Nuclear Resource and Environment, East China University of Technology, Nanchang 330013, China;School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610550, China;Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China; No. 10 Institute of Geological Exploration, Inner Mongolia Bureau of Geology and Mineral Resources, Chifeng 024005, China
Abstract:The low-melting point chalcophile elements (LMCE), including As, Sb, Bi, Hg, Pb, Se, Te, Tl, Sn and so on, have characteristics of chalcophile behavior, low melting point and semi-metallic properties, which can form LMCE melt during mineralization process and play an important role for the efficient enrichment and precipitation of Au, Ag, PGE and other precious metals. In this paper, the previous research data and the LMCE thermodynamic phase diagrams were analyzed. Combining research results of epithermal, orogenic, Carlin to Carlin-like and alkaline to meta-alkaline intrusion-related gold deposits, the authors discussed the formation and type of LMCE melts and their mechanisms for the enrichment of Au, Ag, PGE and other precious metals, and summarized mineral compositions and characteristic textures of mineralization that benefited by LMCE melts. The LMCE melts can be formed during magmatic, (magmatic-) hydrothermal and metamorphic processes, and belong to one of the important metallogenic mechanisms for precious metal deposits. There are many ion clusters in the LMCE melts, and aggregation between the clusters precludes the melt to reach phase equilibrium, which results in many non-equilibrium mineral combinations, including the coexistence of native LMCE, intermetallic compounds and multiphase minerals containing LMCE. Gold could also exist as ion clusters in the LMCE melt that gather to form spherical or flakes native gold, and form the super-rich ore bodies. The minerals formed by LMCE melt often exist as single or group combinations of emulsion droplets, beads, and bubbles in round, nearly round, and irregular particle inclusions in sulfides, selenides, tellurides, oxides and silicates, or distribute along fractures of minerals. These LMCE micro-inclusions are derived from melt disturbance that result in melt-melt or melt-liquid emulsification. Fluid boiling should be the main mechanism that causes the melt disturbance since the LMCE melt cannot be quenched and crystallized quickly at this process. It is usually cooled slowly at low temperature to achieve phase equilibrium and form complex mineral compositions. This feature is significant even in micro-to nano-scale mineral particles. Melt-fluid inclusions are the most direct evidence for the involvement of LMCE melts during mineralization. Solid solution decomposition texture, melt annealing texture, mineral-melt dihedral texture, dissolution-reprecipitation texture are also characteristic textures of LMCE melts involved in mineralization.
Keywords:Low-melting point chalcophile elements  Melt  Precious metal mineralization  Super-enrichment mechanism  Mineral composition  Characteristic texture
本文献已被 CNKI 等数据库收录!
点击此处可从《岩石学报》浏览原始摘要信息
点击此处可从《岩石学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号